Skip Navigation
The Endowment for Human Development
The Endowment for Human Development
Improving lifelong health one pregnancy at a time.
Donate Now Get Free Videos

LA BIOLOGIE DU DÉVELOPPEMENT PRÉNATAL

The Biology of Prenatal Development
DVD Documentation

English / .Français [French]

National Geographic Society This program is distributed in the U.S. and Canada by National Geographic and EHD. [learn more]
Download English PDF  Download Spanish PDF  Download French PDF  What is PDF?

Show Script Cover & Table of Contents

English / Français [French]



 

Chapter 1   Introduction

The dynamic process by which the single-cell human zygote(zī΄gōt)[1] becomes a 100 trillion (1014) cell adult[2] is perhaps the most remarkable phenomenon in all of nature.

Researchers now know that many of the routine functions performed by the adult body become established during pregnancy – often long before birth.[3]

The developmental period before birth is increasingly understood as a time of preparation during which the developing human acquires the many structures, and practices the many skills, needed for survival after birth.

Chapter 1   Introduction

Le processus dynamique par lequel le zygote humain unicellulaire se transforme en un adulte comptant 100 billions de cellules est peut-être le phénomène le plus remarquable de la nature entière.

Les chercheurs savent maintenant qu'un grand nombre des fonctions ordinaires accomplies par le corps adulte sont établies pendant la grossesse, souvent longtemps avant la naissance.

La période de développement avant la naissance est de plus en plus considérée constituer une période de préparation pendant laquelle l'être humain en développement acquiert les nombreuses structures, et pratique les nombreuses techniques nécessaires à la survie après la naissance.

Chapter 2   Terminology

Pregnancy in humans normally lasts approximately 38 weeks[4] as measured from the time of fertilization,[5] or conception,[6] until birth.

During the first 8 weeks following fertilization, the developing human is called an embryo,[7] which means "growing within."[8] This time, called the embryonic period,[9] is characterized by the formation of most major body systems.[10]

From the completion of 8 weeks until the end of pregnancy, "the developing human is called a fetus," which means "unborn offspring." During this time, called the fetal period, the body grows larger and its systems begin to function.[11]

All embryonic and fetal ages in this program refer to the time since fertilization.[12]

Chapter 2   Terminology

La grossesse chez l'être humain dure environ 38 semaines à partir du moment de la fertilisation, ou conception, jusqu'à la naissance.

Au cours des 8 premières semaines après la fertilisation, l'être humain en développement est appelé un embryon, ce qui signifie "croissance à l'intérieur." Cette période, désignée, la période embryonnaire, se caractérise par la formation de la plupart des fonctions principales du corps.

Après ces 8 semaines et jusqu'à la fin de la grossesse, "l'être humain en développement est appelé fœtus," qui signifie "enfant en gestation." Pendant cette période, désignée la période fœtale, le corps grandit et ses systèmes commencent à fonctionner.

Tous les âges embryonnaires et fœtaux dans ce programme se réfèrent au moment depuis la fertilisation.

 

Click any superscript in the text to view footnote. Click any footnote number to view source text. Click on any author name to view the full reference in the Bibliography. Then click your browser’s back button to return to source footnote.


[1] Gasser, 1975, 1.
[2] Guyton and Hall, 2000, 2; Lodish et al., 2000, 12.
[3] Vindla and James, 1995, 598.
[4] Cunningham et al., 2001, 226; O’Rahilly and Müller, 2001, 92.
[5] O’Rahilly and Müller, 1987, 9.
[6] Spraycar, 1995, 377 & 637.
[7] O’Rahilly and Müller, 2001, 87.
[8] Quote from Ayto, 1990, 199.
[9] Human development during the 8-week embryonic period has been divided into a series of 23 stages called Carnegie Stages. These stages are well described in O’Rahilly and Müller, 1987. Because human growth is unique and dependent on multiple factors, different embryos may reach a certain developmental milestone or a certain size at slightly different ages. This internationally-accepted staging system provides a way to describe development independent of age and size. Each of the 23 Carnegie Stages has specific structural features. As we describe various milestones of development, the Carnegie Stage at which they occur will be noted by a designation such as: [Carnegie Stage 2]. See Appendix B for additional information relating embryonic staging and age assignments.
[10] Moore and Persaud, 2003, 3.
[11] Quotes from Moore and Persaud, 2003, 3: “After the embryonic period (eight weeks), the developing human is called a fetus.“ Also see O’Rahilly and Müller, 2001, 87.
[12] This convention, termed “postfertilization age“ by O’Rahilly, has been long preferred by embryologists. [see Mall, 1918, 400; O’Rahilly and Müller, 1999b, 39; O’Rahilly and Müller, 2001, 88 & 91.] Obstetricians and radiologists typically assign age based on the time elapsed since the first day of the last menstrual period prior to fertilization. This is correctly termed “postmenstrual age“ and begins 2 weeks before fertilization occurs. To summarize: postmenstrual age = postfertilization age + 2 weeks. Therefore, postmenstrual age equals approximately 2 weeks at the time of fertilization. The commonly used term “gestational age“ has been used with both age conventions and is best either avoided or carefully defined with each use.

Page 3


The Embryonic Period (The First 8 Weeks)

Embryonic Development: The First 4 Weeks

Chapter 3   Fertilization

Biologically speaking, "human development begins at fertilization,"[13] when a woman and a man each combine 23 of their own chromosomes through the union of their reproductive cells.

A woman's reproductive cell is commonly called an "egg" but the correct term is oocyte (ō´ō-sīt).[14]

Likewise, a man's reproductive cell is widely known as a "sperm," but the preferred term is spermatozoon (sper´mă-tō-zō´on).[15]

Following the release of an oocyte from a woman's ovary in a process called ovulation (ov´yū-lā´shŭn),[16] the oocyte and spermatozoon join within one of the uterine tubes,[17] which are often referred to as Fallopian tubes.

The uterine tubes link a woman's ovaries to her uterus or womb.

The resulting single-celled embryo is called a zygote,[18] meaning "yoked or joined together."[19]

The Embryonic Period (The First 8 Weeks)

Embryonic Development: The First 4 Weeks

Chapter 3   Fertilization

Du point de vue biologique, "le développement humain commence à la fertilisation," lorsqu'une femme et un homme combinent chacun 23 de leurs propres chromosomes par l'union de leurs cellules reproductrices.

La cellule reproductrice de la femme est généralement appelée un "œuf" mais le mot correct est ovocyte.

Pareillement, la cellule reproductrice de l'homme est généralement appelée le "sperme" mais le mot préféré est spermatozoïde.

À la suite de la libération d'un ovocyte par l'ovaire de la femme, selon un processus appelé ovulation, l'ovocyte et le spermatozoïde se joignent dans l'une des trompes utérines, lesquelles sont souvent désignées trompes de Fallope.

Les trompes utérines relient les ovaires de la femme à son utérus ou matrice.

L'embryon unicellulaire qui en résulte est appelé un zygote, ce qui signifie "pairé ou joint."

Chapter 4   DNA, Cell Division, and Early Pregnancy Factor (EPF)

DNA

The zygote's 46 chromosomes[20] represent the unique first edition of a new individual's complete genetic blueprint. This master plan resides in tightly coiled molecules called DNA. They contain the instructions for the development of the entire body.

DNA molecules resemble a twisted ladder known as a double helix.[21] The rungs of the ladder are made up of paired molecules, or bases, called guanine, cytosine, adenine, and thymine.

Guanine pairs only with cytosine, and adenine with thymine.[22] Each human cell contains approximately 3 billion (3×109) base pairs.[23]

The DNA of a single cell contains so much information that if it were represented in printed words, simply listing the first letter of each base would require over 1.5 million (1.5×106) pages of text![24]

If laid end-to-end, the DNA in a single human cell measures 3⅓ feet or 1 meter.[25]

If we could uncoil all of the DNA within an adult's 100 trillion (1014) cells, it would extend over 63 billion (6.3×1010) miles. This distance reaches from the earth to the sun and back 340 times.[26]

Cell Division

Approximately 24 to 30 hours after fertilization, the zygote completes its first cell division.[27] Through the process of mitosis, one cell splits into two, two into four, and so on.[28]

Early Pregnancy Factor (EPF)

As early as 24 to 48 hours after fertilization begins, pregnancy can be confirmed by detecting a hormone called "early pregnancy factor" in the mother's blood.[29]

Chapter 4   DNA, Cell Division, and Early Pregnancy Factor (EPF)

DNA

Les 46 chromosomes du zygote constituent la première et unique édition du plan génétique complet d'un nouvel individu. Ce schéma directeur réside dans des molécules étroitement enroulées appelées l'ADN. Elles contiennent les directives de développement du corps entier.

Les molécules d'ADN ressemblent à une échelle vrillée, connue en tant que double hélice. Les barreaux de l'échelle sont constitués par des molécules appariées, ou bases, formant la guanine, la cytosine, l'adénine et la thymine.

La guanine ne s'apparie qu'avec la cytosine, et l'adénine avec la thymine. Chaque cellule humaine contient environ 3 milliards de ces paires de bases.

L'ADN d'une seule cellule contient tant d'informations que, s'il était représenté en mots imprimés, la simple liste de la première lettre de chaque base exigerait plus de 1,5 millions de pages de texte!

Disposé en une seule ligne, l'ADN d'une seule cellule humaine mesure 1 mètre.

Si l'on pouvait dérouler l'ADN total des 100 billions de cellules de l'être humain, il s'étendrait sur une longueur de plus de 100 milliards de kilomètres. Ceci représente 340 fois la distance aller-retour entre la terre et le soleil.

Cell Division

Environ 24 à 30 heures après la fertilisation, le zygote accomplit sa première division cellulaire. Par le processus de la mitose, une cellule se divise en deux, de deux en quatre et ainsi de suite.

Early Pregnancy Factor (EPF)

Dès 24 à 48 heures après le début de la fertilisation, la grossesse peut être confirmée par la détection d'une hormone désignée "facteur de grossesse précoce" dans le sang de la mère.

 

 


[13] Quote from Moore and Persaud, 2003, 16; From O’Rahilly and Müller, 1987, 9: “Fertilization is the procession of events that begins when a spermatozoon makes contact with an oocyte or its investments and ends with the intermingling of maternal and paternal chromosomes at metaphase of the first mitotic division of the zygote.“ See Carlson, 2004, 3; O’Rahilly and Müller, 2001, 8. [Carnegie Stage 1]
[14] O’Rahilly and Müller, 2001, 25: “The term ‘egg’ should be discarded from human embryology.“ From O’Rahilly and Müller, 1987, 9: “The term ‘egg’ is best reserved for a nutritive object frequently seen on the breakfast table.“
[15] O’Rahilly and Müller, 2001, 23-24.
[16] O’Rahilly and Müller, 2001, 30.
[17] Dorland and Bartelmez, 1922, 372; Gasser, 1975, 1; Mall, 1918, 421; O’Rahilly and Müller, 2001, 31.
[18] Gasser, 1975, 1; O’Rahilly and Müller, 2001, 33.
[19] Quote from Saunders, 1970, 1; Spraycar, 1995, 1976.
[20] Guyton and Hall, 2000, 34.
[21] Guyton and Hall, 2000, 24; Watson and Crick, 1953, 737.
[22] Guyton and Hall, 2000, 24; Lodish et al., 2000, 103; Watson and Crick, 1953, 737.
[23] Lodish et al., 2000, 456.
[24] See Appendix A.
[25] See Appendix A; Alberts et al., 1998, 189.
[26] See Appendix A.
[27] Hertig, 1968, 26; Hertig and Rock, 1973, 130; (cited by O’Rahilly and Müller, 1987, 12); Shettles, 1958, 400.
[28] Guyton and Hall, 2000, 34.
[29] Moore and Persaud, 2003, 33 & 60; Morton et al., 1992, 72; Nahhas and Barnea, 1990, 105.

Page 4


Chapter 5   Early Stages (Morula and Blastocyst) and Stem Cells

By 3 to 4 days after fertilization, the dividing cells of the embryo assume a spherical shape and the embryo is called a morula (mōr´ū-lă).[30]

By 4 to 5 days, a cavity forms within this ball of cells and the embryo is then called a blastocyst.[31]

The cells inside the blastocyst are called the inner cell mass and give rise to the head, body, and other structures vital to the developing human.[32]

Cells within the inner cell mass are called embryonic stem cells because they have the ability to form each of the more than 200 cell types contained in the human body.[33]

Chapter 5   Early Stages (Morula and Blastocyst) and Stem Cells

Entre 3 et 4 jours après la fertilisation, les cellules en division de l'embryon ont pris une forme sphérique et l'embryon est alors désigné morula.

Au bout de 4 à 5 jours, une cavité s'est formée dans ce ballon de cellules et l'embryon est alors appelé un blastocyste.

Les cellules situées à l'intérieur du blastocyste forment la masse cellulaire intérieure et formeront la tête, le corps, et les autres structures vitales de l'être humain en développement.

Les cellules formant la masse cellulaire intérieure sont appelées cellules souches embryonnaires car elles ont chacune la capacité de former chacun des 200 types de cellules contenus dans le corps humain.

Chapter 6   1 to 1½ Weeks: Implantation and Human Chorionic Gonadotropin (hCG)

After traveling down the uterine tube, the early embryo embeds itself into the inner wall of the mother's uterus. This process, called implantation, begins 6 days and ends 10 to 12 days after fertilization.[34]

Cells from the growing embryo begin to produce a hormone called human chorionic gonadotropin (human kō-rē-on'ik gō'nad-ō-trō'pin), or hCG, the substance detected by most pregnancy tests.[35]

HCG directs maternal hormones to interrupt the normal menstrual cycle, allowing pregnancy to continue.[36]

Chapter 6   1 to 1½ Weeks: Implantation and Human Chorionic Gonadotropin (hCG)

Après son passage dans la trompe utérine, l'embryon s'encastre dans la paroi intérieure de l'utérus de la mère. Ce processus, appelé implantation, commence 6 jours et se termine entre 10 et 12 jours après la fertilisation.

Les cellules de l'embryon en développement commencent à produire une hormone appelée gonadotrophine chorionique humaine, ou GCH, la substance détectée par la majorité des tests de grossesse.

La GCH instruit les hormones maternelles d'interrompre le cycle menstruel normal, permettant à la grossesse de continuer.

Chapter 7   The Placenta and Umbilical Cord

Following implantation, cells on the periphery of the blastocyst give rise to part of a structure called the placenta (plă-sen'tă), which serves as an interface between the maternal and embryonic circulatory systems.

The placenta delivers maternal oxygen, nutrients, hormones, and medications to the developing human; removes all waste products; and prevents maternal blood from mixing with the blood of the embryo and fetus.[37]

The placenta also produces hormones and maintains embryonic and fetal body temperature slightly above that of the mother's.[38]

The placenta communicates with the developing human through the vessels of the umbilical (ŭm-bil'i-kăl) cord.[39]

The life support capabilities of the placenta rival those of intensive care units found in modern hospitals.

Chapter 7   The Placenta and Umbilical Cord

À la suite de l'implantation, les cellules sur la périphérie du blastocyste donnent naissance à une partie de structure appelée le placenta, qui remplit le rôle d'interface entre les systèmes circulatoire maternel et embryonnaire.

Le placenta apporte l'oxygène maternel, les nutriments, hormones et médicaments à l'être humain en développement; élimine tous les déchets; et empêche le sang maternel de se mélanger à celui de l'embryon et du fœtus.

Le placenta produit aussi des hormones et maintient la température corporelle embryonnaire et fœtale à un niveau légèrement supérieur à celle de la mère.

Le placenta communique avec l'être humain en développement par les vaisseaux du cordon ombilical.

Les capacités de maintien des fonctions vitales du placenta égalent celles des unités de soins intensifs situées dans les hôpitaux modernes.

 

 


[30] Gasser, 1975, 1; O’Rahilly and Müller, 2001, 37; Spraycar, 1995, 1130: “Morula“ is derived from the Latin word morus meaning “mulberry.“ [Carnegie Stage 2]
[31] O’Rahilly and Müller, 2001, 39. [Carnegie Stage 3]
[32] Gasser, 1975, 1; O’Rahilly and Müller, 2001, 39; Sadler, 2005, 6.
[33] Alberts et al., 1998, 32. For a discussion and definition of embryonic stem cells see the website of the National Institutes of Health: http://stemcells.nih.gov/infoCenter/stemCellBasics.asp#3
[34] O’Rahilly and Müller, 2001, 40; Implantation begins with attachment of the blastocyst at about 6 days after fertilization. [Attachment of the blastocyst to the inner wall of the uterus is a transient event and is the hallmark of Carnegie Stage 4.] See also Adams, 1960, 13-14; Cunningham et al., 2001, 20; Hamilton, 1949, 285-286; Hertig, 1968, 41; Hertig and Rock, 1944, 182; Hertig and Rock, 1945, 81 & 83; Hertig and Rock, 1949, 183; Hertig et al., 1956, 444. [Carnegie Stage 5]
[35] Chartier et al., 1979, 134; Cunningham et al., 2001, 27; O’Rahilly and Müller, 2001, 43.
[36] Cunningham et al., 2001, 20 & 26-27; O’Rahilly and Müller, 2001, 31.
[37] Hertig, 1968, 16; Cunningham et al., 2001, 86 & 136; For a detailed description of the placenta see Hamilton and Boyd, 1960. For a detailed description of the placenta vasculature see Harris and Ramsey, 1966. This separation of maternal and fetal blood is almost but not quite perfect as a small number of fetal cells may be found in the maternal circulation and vice-versa. See Cunningham et al., 2001, 96 & 136.
[38] Liley, 1972, 101; O’Rahilly and Müller, 2001, 78-79.
[39] For a detailed description of umbilical cord formation see Florian, 1930.

Page 5


Chapter 8   Nutrition and Protection

By 1 week, cells of the inner cell mass form two layers called the hypoblast and epiblast.[40]

The hypoblast gives rise to the yolk sac,[41] which is one of the structures through which the mother supplies nutrients to the early embryo.[42]

Cells from the epiblast form a membrane called the amnion (am-nē-on),[43] within which the embryo and later the fetus develop until birth.

Chapter 8   Nutrition and Protection

À la fin de la première semaine, les cellules de la masse cellulaire intérieure forment deux couches appelées l'endoblaste et l'épiblaste.

L'endoblaste donne naissance à la vésicule ombilicale, qui est l'une des structures par lesquelles la mère fournit les nutriments à l'embryon en développement.

Les cellules de l'épiblaste forment une membrane appelée l'amnios, à l'intérieur de laquelle l'embryon et plus tard le fœtus se développent jusqu'à la naissance.

Chapter 9   2 to 4 Weeks: Germ Layers and Organ Formation

By approximately 2½ weeks, the epiblast has formed 3 specialized tissues, or germ layers, called ectoderm, endoderm, and mesoderm.[44]

Ectoderm gives rise to numerous structures including the brain, spinal cord, nerves, skin, nails, and hair.

Endoderm produces the lining of the respiratory system and digestive tract and generates portions of major organs such as the liver and pancreas.

Mesoderm forms the heart, kidneys, bones, cartilage, muscles, blood cells, and other structures.[45]

By 3 weeks the brain is dividing into 3 primary sections called the forebrain, midbrain, and hindbrain.[46]

Development of the respiratory and digestive systems is also underway.[47]

As the first blood cells appear in the yolk sac,[48] blood vessels form throughout the embryo, and the tubular heart emerges.[49]

Almost immediately, the rapidly growing heart folds in upon itself as separate chambers begin to develop.[50]

The heart begins beating 3 weeks and 1 day following fertilization.[51]

The circulatory system is the first body system, or group of related organs, to achieve a functional state.[52]

Chapter 9   2 to 4 Weeks: Germ Layers and Organ Formation

À environ 2 semaines et demie, l'épiblaste a formé 3 tissus spécialisés, ou feuillets embryonnaires, désignés ectoderme, endoderme, et mésoderme.

L'ectoderme donne naissance à de nombreuses structures y compris le cerveau, la moelle épinière, les nerfs, la peau, les ongles, et les cheveux.

L'endoderme produit la membrane interne du système respiratoire et du tube digestif, et crée certaines parties des organes principaux telles que le foie et le pancréas.

Le mésoderme forme le cœur, les reins, les os, le cartilage, les muscles, les cellules sanguines et autres structures.

À 3 semaines, le cerveau s'est divisé en 3 sections principales appelées le prosencéphale, le diencéphale, et le rhombencéphale.

Le développement des systèmes respiratoire et digestif est également en cours.

Lorsque les premières cellules sanguines se manifestent dans la vésicule ombilicale, les vaisseaux sanguins se forment à l'intérieur de l'embryon, et le cœur tubulaire apparaît.

Presque immédiatement, le cœur en croissance rapide se replie sur lui-même et deux cavités distinctes commencent à se développer.

Le cœur commence à battre à 3 semaines et 1 jour après la fertilisation.

Le système circulatoire est le premier système du corps ou groupe d'organes associés, à atteindre un état fonctionnel.

Chapter 10   3 to 4 Weeks: The Folding of the Embryo

Between 3 and 4 weeks, the body plan emerges as the brain, spinal cord, and heart of the embryo are easily identified alongside the yolk sac.

Rapid growth causes folding of the relatively flat embryo.[53] This process incorporates part of the yolk sac into the lining of the digestive system and forms the chest and abdominal cavities of the developing human.[54]

Chapter 10   3 to 4 Weeks: The Folding of the Embryo

Entre 3 et 4 semaines, le plan corporel a pris forme et le cerveau, la moelle épinière, et le cœur de l'embryon sont facilement reconnaissables le long de la vésicule ombilicale.

La croissance rapide produit le repli de l'embryon relativement plat. Ce processus incorpore une partie de la vésicule ombilicale dans la membrane intérieure du système digestif et forme les cavités pulmonaire et abdominale de l'être humain en développement.

 

 


[40] O’Rahilly and Müller, 2001, 39.
[41] Moore and Persaud, 2003, 50; O’Rahilly and Müller, 2001, 82. [Carnegie Stages 5 & 6]; In humans, the term “yolk sac“ has fallen out of favor among some embryologists (including O’Rahilly and Müller) because it is not a nutrient reservoir and does not contain yolk. The technically preferred term is umbilical vesicle. This structure plays a vital role in the transfer of nutrients from mother to embryo before placental circulation becomes fully functional.
[42] Campbell et al., 1993, 756; Kurjak et al., 1994, 437; O’Rahilly and Müller, 2001, 82.
[43] O’Rahilly and Müller, 1987, 29; O’Rahilly and Müller, 2001, 43. [Carnegie Stages 4-5]
[44] O’Rahilly and Müller, 2001, 14 & 135. [Carnegie Stage 7]; It should be noted there are many examples of organs derived from multiple germ layers. For instance, the liver is largely derived from endoderm but contains blood vessels and blood cells derived from mesoderm and nerves of ectodermal origin.
[45] Moore and Persaud, 2003, 80 & 83; Sadler, 2005, 9.
[46] Bartelmez, 1923, 236; Müller and O’Rahilly, 1983, 419-420 & 429; O’Rahilly and Gardner, 1979, 123 & 129; O’Rahilly and Müller, 1984, 422; O’Rahilly and Müller, 1987, 90; O’Rahilly and Müller, 1999a, 47 & 52. [Carnegie Stage 9]
[47] DiFiore and Wilson, 1994, 221; Fowler et al., 1988, 793; Grand et al., 1976, 793-794 & 796 & 798; O’Rahilly, 1978, 125; O’Rahilly and Boyden, 1973, 238-239; O’Rahilly and Müller, 1984, 421; O’Rahilly and Tucker, 1973, 6 & 8 & 23; Streeter, 1942, 232 & 235.
[48] Carlson, 2004, 117.
[49] Gilmour, 1941, 28; O’Rahilly and Müller, 1987, 86. [Carnegie Stage 9]
[50] Campbell, 2004, 14; Carlson, 2004, 116 & 446; Navaratnam, 1991, 147-148; O’Rahilly and Müller, 1987, 99. [Carnegie Stage 10]
[51] Campbell, 2004, 14; Carlson, 2004, 430; De Vries and Saunders, 1962, 96; Gardner and O’Rahilly, 1976, 583; Gilbert-Barness and Debich-Spicer, 1997, 650; Gittenger-de Groot et al., 2000, 17; van Heeswijk et al., 1990, 151; Kurjak and Chervenak, 1994, 439; Navaratnam, 1991, 147-148; O’Rahilly and Müller, 1987, 99; Wisser and Dirschedl, 1994, 108. [Carnegie Stage 10, possibly late Stage 9]
[52] Moore and Persaud, 2003, 70: “The cardiovascular system is the first organ system to reach a functional state.“
[53] Moore and Persaud, 2003, 78.
[54] Gasser, 1975, 26; Moore and Persaud, 2003, 78.

Page 6


Embryonic Development: 4 to 6 Weeks

Chapter 11   4 Weeks: Amniotic Fluid

By 4 weeks the clear amnion surrounds the embryo in a fluid-filled sac.[55] This sterile liquid, called amniotic (am-nē-ot'ik) fluid, provides the embryo with protection from injury.[56]

Embryonic Development: 4 to 6 Weeks

Chapter 11   4 Weeks: Amniotic Fluid

À 4 semaines l'amnios transparent entoure l'embryon dans un sac rempli de liquide. Ce liquide stérile, appelé liquide amniotique, protège l'embryon contre les risques corporels.

Chapter 12   The Heart in Action

The heart typically beats about 113 times per minute.[57]

Note how the heart changes color as blood enters and leaves its chambers with each beat.

The heart will beat approximately 54 million (5.4×107) times before birth and over 3.2 billion (3.2×109) times over the course of an 80-year lifespan.[58]

Chapter 12   The Heart in Action

Le cœur bat généralement environ 113 fois par minute.

Remarquez comme le cœur change de couleur à l'entrée et à la sortie du sang des cavités avec chaque battement.

Le cœur battra approximativement 54 millions de fois avant la naissance et plus de 3,2 milliards de fois au cours d'une vie de 80 ans.

Chapter 13   Brain Growth

Rapid brain growth is evidenced by the changing appearance of the forebrain, midbrain, and hindbrain.

Chapter 13   Brain Growth

La croissance rapide du cerveau est démontrée par le changement d'aspect du prosencéphale, du diencéphale, et du rhombencéphale.

Chapter 14   Limb Buds

Upper and lower limb development begins with the appearance of the limb buds by 4 weeks.[59]

The skin is transparent at this point because it is only one cell thick.

As the skin thickens, it will lose this transparency, which means that we will only be able to watch internal organs develop for about another month.[60]

Chapter 14   Limb Buds

Le développement des membres supérieurs et inférieurs a commencé avec l'apparition de bourgeons de membre à 4 semaines.

À ce point, la peau est transparente parce que son épaisseur n'est que d'une cellule.

Au fur et à mesure de son épaississement, la peau perd sa transparence, ce qui signifie que nous ne pourrons voir les organes internes se développer que pendant encore un mois.

Chapter 15   5 Weeks: Cerebral Hemispheres

Between 4 and 5 weeks, the brain continues its rapid growth and divides into five distinct sections.[61]

The head comprises about one-third of the embryo's total size.[62]

The cerebral (ser'ĕ-brăl) hemispheres appear,[63] gradually becoming the largest parts of the brain.[64]

Functions eventually controlled by the cerebral hemispheres include thought, learning, memory, speech, vision, hearing, voluntary movement, and problem-solving.[65]

Chapter 15   5 Weeks: Cerebral Hemispheres

Entre les semaines 4 et 5, le cerveau continue sa croissance rapide et se divise en 5 sections distinctes.

La tête contient environ 1/3 de la taille totale de l'embryon.

Les hémisphères cérébraux apparaissent, et deviennent progressivement les parties les plus grosses du cerveau.

Les fonctions contrôlées par les hémisphères cérébraux comprennent la pensée, l'apprentissage, la mémoire, le langage, la vision, l'audition, les mouvements volontaires, et la résolution de problèmes.

 

 


[55] Gasser, 1975, 30; O’Rahilly and Müller, 2001, 80.
[56] O’Rahilly and Müller, 2001, 81.
[57] van Heeswijk et al., 1990, 153.
[58] See Appendix A.
[59] Gasser, 1975, 49 & 59; O’Rahilly and Gardner, 1975, 11; O’Rahilly and Müller, 1985, 148 & 151; O’Rahilly and Müller, 1987, 143; Streeter, 1945, 30; Uhthoff, 1990, 7 & 141. [upper and lower limb buds: Carnegie Stages 12 & 13]
[60] Moore and Persaud, 2003, 486; O’Rahilly, 1957, 459; O’Rahilly and Müller, 2001, 165. For information about the first-trimester, direct-imaging technique used in this program (called embryoscopy), see Cullen et al., 1990.
[61] O’Rahilly and Müller, 1999a, 134; Sadler, 2005, 106. [Carnegie Stage 15]
[62] Laffont, 1982, 5.
[63] Bartelmez and Dekaban, 1962, 25; Campbell, 2004, 17; O’Rahilly and Gardner, 1979, 130; O’Rahilly et al., 1984, 249; O’Rahilly and Müller, 1999a, 115; van Dongen and Goudie, 1980, 193. [Carnegie Stage 14]
[64] Moore, 1980, 938.
[65] Guyton and Hall, 2000, 663-677.

Page 7


Chapter 16   Major Airways

In the respiratory system, the right and left main stem bronchi (brong'kī) are present[66] and will eventually connect the trachea (trā´kē-ă), or windpipe, with the lungs.

Chapter 16   Major Airways

Dans le système respiratoire, les bronches souches principales droite et gauche sont présentes et raccorderont éventuellement la trachée aux poumons.

Chapter 17   Liver and Kidneys

Note the massive liver filling the abdomen adjacent to the beating heart.

The permanent kidneys appear by 5 weeks.[67]

Chapter 17   Liver and Kidneys

Remarquez la masse du foie qui remplit l'abdomen à côté du cœur qui bat.

Les reins définitifs apparaissent en 5 semaines.

Chapter 18   Yolk Sac and Germ Cells

The yolk sac contains early reproductive cells called germ cells. By 5 weeks these germ cells migrate to the reproductive organs adjacent to the kidneys.[68]

Chapter 18   Yolk Sac and Germ Cells

La vésicule ombilicale contient les cellules reproductrices préliminaires appelées cellules germinales. À 5 semaines, ces cellules germinales ont migré dans les organes reproducteurs adjacents aux reins.

Chapter 19   Hand Plates and Cartilage

Also by 5 weeks, the embryo develops hand plates,[69] and cartilage formation begins by 5½ weeks.[70]

Here we see the left hand plate and wrist at 5 weeks and 6 days.

Chapter 19   Hand Plates and Cartilage

Également à 5 semaines, l'embryon a développé les lames osseuses des mains et à 5 semaines et demie la formation du cartilage a commencé.

Nous voyons ici la lame de la main gauche et le poignet à 5 semaines et 6 jours.

 

 


[66] Moore and Persaud, 2003, 245; O’Rahilly and Boyden, 1973, 239; O’Rahilly and Müller, 2001, 291; Sparrow et al., 1999, 550.
[67] Angtuaco et al., 1999, 13; Lipschutz, 1998, 384; Moore and Persaud, 2003, 288; O’Rahilly and Müller, 1987, 167 & 182; O’Rahilly and Müller, 2001, 301; Sadler, 2005, 72. [Carnegie Stage 14]
[68] O’Rahilly and Müller, 2001, 23; Waters and Trainer, 1996, 16; Witschi, 1948, 70, 77 & 79.
[69] O’Rahilly and Müller, 1987, 175; Streeter, 1948, 139. [Carnegie Stage 15 ]
[70] O’Rahilly and Gardner, 1975, 4. [Carnegie Stages 16 and 17 ]

Page 8


Embryonic Development: 6 to 8 Weeks

Chapter 20   6 Weeks: Motion and Sensation

By 6 weeks the cerebral hemispheres are growing disproportionately faster than other sections of the brain.

The embryo begins to make spontaneous and reflexive movements.[71] Such movement is necessary to promote normal neuromuscular development.

A touch to the mouth area causes the embryo to reflexively withdraw its head.[72]

Embryonic Development: 6 to 8 Weeks

Chapter 20   6 Weeks: Motion and Sensation

À 6 semaines, les hémisphères cérébraux se sont développés avec une rapidité disproportionnée par rapport aux autres sections du cerveau.

L'embryon commence à faire des mouvements spontanés et réflexifs. Ces mouvements sont nécessaires pour assurer un développement neuromusculaire normal.

Un contact sur la bouche amène l'embryon à faire un retrait réflexif de la tête.

Chapter 21   The External Ear and Blood Cell Formation

The external ear is beginning to take shape.[73]

By 6 weeks, blood cell formation is underway in the liver where lymphocytes are now present.[74] This type of white blood cell is a key part of the developing immune system.

Chapter 21   The External Ear and Blood Cell Formation

L'oreille externe commence à se former.

À 6 semaines, la formation des cellules sanguinaires a commencé dans le foie où les lymphocytes existent maintenant. Ce type de globule blanc a une importance primordiale dans le développement du système immunitaire.

Chapter 22   The Diaphragm and Intestines

The diaphragm (dī'ă-fram), the primary muscle used in breathing, is largely formed by 6 weeks.[75]

A portion of the intestine now protrudes temporarily into the umbilical cord. This normal process, called physiologic herniation (fiz-ē-ō-loj'ik her-nē-ā'shŭn), makes room for other developing organs in the abdomen.[76]

Chapter 22   The Diaphragm and Intestines

Le diaphragme, muscle principalement utilisé par la respiration, est pratiquement formé à 6 semaines.

Une partie de l'intestin pénètre maintenant provisoirement dans le cordon ombilical. Ce processus normal, appelé herniation physiologique, laisse de l'espace pour le développement des autres organes dans l'abdomen.

Chapter 23   Hand Plates and Brainwaves

At 6 weeks the hand plates develop a subtle flattening.[77]

Primitive brainwaves have been recorded as early as 6 weeks and 2 days.[78]

Chapter 23   Hand Plates and Brainwaves

À 6 semaines, la lame des mains s'aplatit légèrement.

Des ondes cérébrales primitives ont été relevées dès 6 semaines et 2 jours.

 

 


[71] Birnholz et al., 1978, 539; de Vries et al., 1982, 301 & 304: “The first movements were observed at 7.5 weeks postmenstrual age.“ [or 5½ weeks postfertilization age]; Humphrey, 1964, 99: earliest reflex 5½ weeks; Humphrey, 1970, 12; Humphrey and Hooker, 1959, 76; Humphrey and Hooker, 1961, 147; Kurjak and Chervenak, 1994, 48; Visser et al., 1992, 175-176: “Endogenously generated fetal movements can first be observed after 7 weeks postmenstrual age (i.e. 5 weeks after conception);“ Natsuyama, 1991, 13; O’Rahilly and Müller, 1999a, 336: 5½ weeks postfertilization; Sorokin and Dierker, 1982, 723 & 726; Visser et al., 1992, 175-176; Natsuyama, 1991, 13: Spontaneous movement observed by “Carnegie stage 15“ (about 33 days postfertilization); Hogg, 1941, 373: Reflex activity begins at 6½ weeks [adjusted to postfertilization age].
[72] Goodlin, 1979, D-128.
[73] Karmody and Annino, 1995, 251; O’Rahilly and Müller, 2001, 480; Streeter, 1948, 190.
[74] Kurjak and Chervenak, 1994, 19.
[75] de Vries et al., 1982, 320.
[76] Gilbert-Barness and Debich-Spicer, 1997, 774; Grand et al., 1976, 798; O’Rahilly and Müller, 1987, 213; Sadler, 2005, 66; Spencer, 1960, 9; Timor-Tritsch et al., 1990, 287.
[77] O’Rahilly and Müller, 1987, 202-203.
[78] Borkowski and Bernstine, 1955, 363 (cited by Bernstine, 1961, 63 & 66; O’Rahilly and Müller, 1999a, 195; van Dongen and Goudie, 1980, 193.); Hamlin, 1964, 113. For a summary of in utero fetal encephalography (measuring brainwaves) in the near- term fetus using abdominal and vaginal electrodes see Bernstine et al., 1955.

Page 9


Chapter 24   Nipple Formation

Nipples appear along the sides of the trunk shortly before reaching their final location on the front of the chest.[79]

Chapter 24   Nipple Formation

Les mamelons apparaissent sur les côtés du tronc un peu avant d'atteindre leur emplacement définitif sur la poitrine.

Chapter 25   Limb Development

By 6½ weeks, the elbows are distinct, the fingers are beginning to separate,[80] and hand movement can be seen.

Bone formation, called ossification (os'i-fi-kā'shŭn), begins within the clavicle, or collar bone, and the bones of the upper and lower jaw.[81]

Chapter 25   Limb Development

À 6 semaines et demie, les coudes sont reconnaissables, les doigts commencent à se séparer, et le mouvement de la main est noté.

La formation osseuse, appelée l'ossification, commence dans la clavicule, et dans les os des mâchoires supérieure et inférieure.

Chapter 26   7 Weeks: Hiccups and Startle Response

Hiccups have been observed by 7 weeks.[82]

Leg movements can now be seen, along with a startle response.[83]

Chapter 26   7 Weeks: Hiccups and Startle Response

Le hoquet a été observé à 7 semaines.

Des mouvements de jambes sont maintenant observés, avec un réflexe de Moro.

Chapter 27   The Maturing Heart

The four-chambered heart is largely complete.[84] On average, the heart now beats 167 times per minute.[85]

Electrical activity of the heart recorded at 7½ weeks reveals a wave pattern similar to the adult's.[86]

Chapter 27   The Maturing Heart

Le cœur à 4 cavités est pratiquement terminé. Le cœur bat maintenant en moyenne 167 fois par minute.

Une activité électrique cardiaque a été enregistrée à 7 semaines et demie indiquant un modèle d'onde semblable à celui de l'adulte.

Chapter 28   Ovaries and Eyes

In females, the ovaries are identifiable by 7 weeks.[87]

By 7½ weeks, the pigmented retina of the eye is easily seen and the eyelids are beginning a period of rapid growth.[88]

Chapter 28   Ovaries and Eyes

Chez le fœtus féminin, les ovaires se reconnaissent à 7 semaines.

À 7 semaines et demie, la rétine pigmentée de l'œil se voit facilement et les paupières initient une période de croissance rapide.

Chapter 29   Fingers and Toes

Fingers are separate and toes are joined only at the bases.

The hands can now come together, as can the feet.[89]

Knee joints are also present.[90]

Chapter 29   Fingers and Toes

Les doigts sont séparés et les orteils ne sont joints qu'à la base.

Les mains peuvent maintenant se toucher, ainsi que les pieds.

Les articulations des genoux sont également présentes.

 

 


[79] O’Rahilly and Müller, 1985, 155: “The nipple appears at stages 17 and 18.“ [41-44 days postfertilization]; Wells, 1954, 126.
[80] O’Rahilly and Müller, 2001, 221; Streeter, 1948, 187.
[81] Carlson, 2004, 189; O’Rahilly and Gardner, 1972, 293; O’Rahilly and Gardner, 1975, 19; O’Rahilly and Müller, 2001, 385; Sperber, 1989, 122 & 147. [Carnegie Stage 19]
[82] de Vries et al., 1982, 305 & 311; Visser et al., 1992, 176.
[83] de Vries et al., 1988, 96; Visser et al., 1992, 176.
[84] Cooper and O’Rahilly, 1971, 292; James, 1970, 214; Jordaan, 1979, 214; Streeter, 1948, 192; Vernall, 1962, 23: “The four chambers of the heart and the associated major vessels are externally apparent in a close approximation to their adult positions.“ [Carnegie Stage 18]
[85] van Heeswijk et al., 1990, 153.
[86] Straus et al., 1961, 446 (cited by Gardner and O’Rahilly, 1976, 571.):  “…an electrocardiogram with the classical P, QRS, and T configuration has been obtained from a 23mm human embryo (Straus, Walker, and Cohen, 1961).“
[87] O’Rahilly and Müller, 2001, 320. [Carnegie Stage 20]
[88] Andersen et al., 1965, 646; O’Rahilly, 1966, 35; O’Rahilly and Müller, 1987, 259; Pearson, 1980, 39; Streeter, 1951, 193. [Carnegie Stage 22] Pigment within the retina is present from about 37 days postfertilization per O’Rahilly, 1966, 25. [Carnegie Stage 16]
[89] Streeter, 1951, 191; reiterated by O’Rahilly and Müller, 1987, 257.
[90] O’Rahilly and Gardner, 1975, 11; O’Rahilly and Müller, 1987, 262.

Page 10


The 8-Week Embryo

Chapter 30   8 Weeks: Brain Development

At 8 weeks the brain is highly complex[91] and constitutes almost half of the embryo's total body weight.[92]

Growth continues at an extraordinary rate.

The 8-Week Embryo

Chapter 30   8 Weeks: Brain Development

À 8 semaines, le cerveau est déjà complexe et représente presque la moitié du poids total de l'embryon.

La croissance se poursuit à une vitesse extraordinaire.

Chapter 31   Right- and Left-Handedness

By 8 weeks, 75 percent of embryos exhibit right-hand dominance. The remainder is equally divided between left-handed dominance and no preference. This is the earliest evidence of right- or left-handed behavior.[93]

Chapter 31   Right- and Left-Handedness

À 8 semaines, 75 % des embryons accusent une dominance droitière. Le reste est également divisé entre la dominance gauchère et l'absence de préférence. Ceci est la première démonstration d'un comportement droitier ou gaucher.

Chapter 32   Rolling Over

Pediatric textbooks describe the ability to "roll over" as appearing 10 to 20 weeks after birth.[94] However, this impressive coordination is displayed much earlier in the low-gravity environment of the fluid-filled amniotic sac.[95] Only the lack of strength required to overcome the higher gravitational force outside the uterus prevents newborns from rolling over.[96]

The embryo is becoming more physically active during this time.

Motions may be slow or rapid, single or repetitive, spontaneous or reflexive.

Head rotation, neck extension, and hand-to-face contact occur more often.[97]

Touching the embryo elicits squinting, jaw movement, grasping motions, and toe pointing.[98]

Chapter 32   Rolling Over

Les manuels de pédiatrie décrivent la capacité de "se retourner" apparaissant entre 10 et 20 semaines après la naissance. Cependant, cette impressionnante coordination se manifeste bien avant dans l'environnement en faible gravité du sac amniotique rempli de liquide. Seul le manque de la force requise pour surmonter la force gravitationnelle plus élevée à l'extérieur de l'utérus empêche les nouveau-nés de se retourner.

L'embryon devient physiquement plus actif au cours de cette période.

Les mouvements peuvent être lents ou rapides, simples ou répétitifs, spontanés ou réflexifs.

Des rotations de la tête, des étirements du cou et les contacts mains visage se produisent plus souvent.

Le fait de toucher l'embryon résulte en une loucherie, des mouvements de mâchoires, mouvements de saisie et le pointage des orteils.

Chapter 33   Eyelid Fusion

Between 7 and 8 weeks, the upper and lower eyelids rapidly grow over the eyes and partially fuse together.[99]

Chapter 33   Eyelid Fusion

Entre 7 et 8 semaines, les paupières supérieure et inférieure se forment rapidement au-dessus des yeux et fusionnent partiellement.

Chapter 34   "Breathing" Motion and Urination

Although there is no air in the uterus, the embryo displays intermittent breathing motions by 8 weeks.[100]

By this time, kidneys produce urine which is released into the amniotic fluid.[101]

In male embryos, the developing testes begin to produce and release testosterone (tes-tos´tĕ-rōn).[102]

Chapter 34   "Breathing" Motion and Urination

Bien qu'il n'y ait pas d'air dans l'utérus, l'embryon affiche des mouvements de respiration intermittents à 8 semaines.

À ce point, les reins produisent de l'urine qui est libérée dans le liquide amniotique.

Chez les embryons masculins, les testicules en développement commencent à produire et à libérer de la testostérone.

Chapter 35   The Limbs and Skin

The bones, joints, muscles, nerves, and blood vessels of the limbs closely resemble those in adults.[103]

By 8 weeks the epidermis, or outer skin, becomes a multi-layered membrane,[104] losing much of its transparency.

Eyebrows grow as hair appears around the mouth.[105]

Chapter 35   The Limbs and Skin

Les os, articulations, muscles, nerfs, et vaisseaux sanguins des membres ressemblent de près à ceux de l'adulte.

À 8 semaines, l'épiderme, ou peau extérieure, s'est transformé en une membrane à plusieurs couches, et perd beaucoup de sa transparence.

Les sourcils poussent et des poils apparaissent autour de la bouche.

Chapter 36   Summary of the First 8 Weeks

Eight weeks marks the end of the embryonic period.

During this time, the human embryo has grown from a single cell into the nearly 1 billion (109) cells[106] which form over 4,000 (4×103) distinct anatomic structures.

The embryo now possesses more than 90 percent of the structures found in adults.[107]

Chapter 36   Summary of the First 8 Weeks

Huit semaines marquent la fin de la période embryonnaire.

Jusqu'ici, l'embryon humain s'est développé à partir d'une seule cellule pour atteindre presque le milliard de cellules qui forment plus de 4 000 structures anatomiques distinctes.

L'embryon possède maintenant plus de 90 % des structures présentes chez l'adulte.

 

 


[91] O’Rahilly and Müller, 1999a, 288: “The brain at [Carnegie] Stage 23 is far more advanced morphologically than is generally appreciated, to such an extent that functional considerations are imperative.“
[92] Jordaan, 1979, 149.
[93] Hepper et al., 1998, 531; McCartney and Hepper, 1999, 86.
[94] Bates, 1987, 534.
[95] de Vries et al., 1982, 320; Goodlin and Lowe, 1974, 348; Humphrey, 1970, 8.
[96] Liley, 1972, 101.
[97] de Vries et al., 1982, 311.
[98] Humphrey, 1964, 102; Humphrey, 1970, 19.
[99] Process described by Andersen et al., 1965, 648-649; O’Rahilly, 1966, 36-37; O’Rahilly and Müller, 1987, 261. [Carnegie Stage 23]
[100] Connors et al., 1989, 932; de Vries et al., 1982, 311; McCray, 1993, 579; Visser et al.,1992, 177.
[101] O’Rahilly and Müller, 2001, 304; Windle, 1940, 118; (Windle reports urine formation begins at nine weeks.)
[102] Moore and Persaud, 2003, 307; Waters and Trainer, 1996, 16-17.
[103] O’Rahilly and Gardner, 1975, 15: ”By the end of the embryonic proper (Stage 23, 8 postovulatory weeks), all of the major skeletal, articular, muscular, neural, and vascular elements of the limbs are present in a form and arrangement closely resembling those of the adult.“ See O’Rahilly, 1957, for a summary of joint types and a description of limb joint development during the embryonic period. See Gray et al., 1957, for a detailed examination of the bones and joints of the hand throughout the embryonic and fetal periods.
[104] Hogg, 1941, 407; Pringle, 1988, 178.
[105] Hogg, 1941, 387; O’Rahilly and Müller, 2001, 169.
[106] Pringle, 1988, 176.
[107] O’Rahilly and Müller, 2001, 87: “It has been estimated that more than 90% of the more than 4500 named structures of the adult body become apparent during the embryonic period (O’Rahilly).“

Page 11


The Fetal Period (8 Weeks through Birth)

Chapter 37   9 Weeks: Swallows, Sighs, and Stretches

The fetal period continues until birth.

By 9 weeks, thumb sucking begins[108] and the fetus can swallow amniotic fluid.[109]

The fetus can also grasp an object,[110] move the head forward and back, open and close the jaw, move the tongue, sigh,[111] and stretch.[112]

Nerve receptors in the face, the palms of the hands, and the soles of the feet can sense light touch.[113]

"In response to a light touch on the sole of the foot," the fetus will bend the hip and knee and may curl the toes.[114]

The eyelids are now completely closed.[115]

In the larynx, the appearance of vocal ligaments signals the onset of vocal cord development.[116]

In female fetuses, the uterus is identifiable[117] and immature reproductive cells called oogonia (ō-ō-gō′nē-ă) are replicating within the ovary.[118]

External genitalia begin to distinguish themselves as either male or female.[119]

The Fetal Period (8 Weeks through Birth)

Chapter 37   9 Weeks: Swallows, Sighs, and Stretches

La période fœtale continue jusqu'à la naissance.

À 9 semaines, la succion du pouce a commencé et le fœtus peut avaler du liquide amniotique.

Le fœtus peut aussi saisir un objet, bouger la tête d'avant en arrière, ouvrir et fermer les mâchoires, bouger la langue, soupirer et s'étirer.

Les récepteurs nerveux du visage, de la paume de la main et de la plante des pieds peuvent sentir un léger contact.

"En réponse à un léger contact sur la plante du pied," le fœtus courbera hanche et genou et pourra refermer ses orteils.

Les paupières sont maintenant complètement fermées.

Dans le larynx, l'apparition des ligaments vocaux signale le début du développement des cordes vocales.

Chez le fœtus féminin, l'utérus se reconnaît et des cellules reproductrices immatures appelées ovogonie, se répliquent dans l'ovaire.

Les organes génitaux extérieurs commencent à se distinguer en tant que masculins ou féminins.

Chapter 38   10 Weeks: Rolls Eyes and Yawns, Fingernails & Fingerprints

A burst of growth between 9 and 10 weeks increases body weight by over 75 percent.[120]

By 10 weeks, stimulation of the upper eyelid causes a downward rolling of the eye.[121]

The fetus yawns and often opens and closes the mouth.[122]

Most fetuses suck the right thumb.[123]

Sections of intestine within the umbilical cord are returning to the abdominal cavity.[124]

Ossification is underway in most bones.[125]

Fingernails and toenails begin to develop.[126]

Unique fingerprints appear 10 weeks after fertilization. These patterns can be used for identification throughout life.[127]

Chapter 38   10 Weeks: Rolls Eyes and Yawns, Fingernails & Fingerprints

Un saut de croissance entre 9 et 10 semaines augmente le poids corporel de plus de 75 %.

À 10 semaines, la stimulation de la paupière supérieure produit un roulement de l'œil vers le bas.

Le fœtus baille et ouvre et ferme souvent la bouche.

La majorité des fœtus sucent leur pouce droit.

Les sections d'intestin encore dans le cordon ombilical retournent dans la cavité abdominale.

L'ossification a commencé pour la plupart des os.

Les ongles des doigts et orteils commencent à se développer.

Les empreintes digitales uniques existent à 10 semaines après la fertilisation. Ces empreintes peuvent servir d'identification pour toute la vie.

Chapter 39   11 Weeks: Absorbs Glucose and Water

By 11 weeks the nose and lips are completely formed.[128] As with every other body part, their appearance will change at each stage of the human life cycle.

The intestine starts to absorb glucose and water swallowed by the fetus.[129]

Though sex is determined at fertilization, external genitalia can now be distinguished as male or female.[130]

Chapter 39   11 Weeks: Absorbs Glucose and Water

À 11 semaines, le nez et les lèvres sont totalement formés. Comme pour toutes les autres parties du corps, leur apparence changera à chaque stade du cycle de la vie humaine.

L'intestin commence à absorber le glucose et l'eau avalés par le fœtus.

Bien que le sexe soit déterminé à la fertilisation, on distingue à présent les organes génitaux externes en tant que masculins ou féminins.

 

 


[108] Liley, 1972, 103.
[109] Campbell, 2004, 24; de Vries, 1982, 311; Petrikovsky et al., 1995, 605.
[110] Robinson and Tizard, 1966, 52; Valman and Pearson, 1980, 234.
[111] de Vries et al., 1982, 305-307.
[112] de Vries et al., 1982, 311.
[113] Humphrey, 1964, 96; Humphrey, 1970, 16-17 (cited by Reinis and Goldman, 1980, 232); Humphrey and Hooker, 1959, 77-78.
[114] Robinson and Tizard, 1966, 52; Quote from Valman and Pearson, 1980, 234.
[115] Andersen et al., 1965, 648-649; O’Rahilly and Müller, 2001, 465; Pearson, 1980, 39-41.
[116] O’Rahilly and Müller, 1984, 425. See also Campbell, 2004, 29.
[117] O’Rahilly, 1977a, 128; O’Rahilly, 1977b, 53; O’Rahilly and Müller, 2001, 327.
[118] O’Rahilly and Müller, 2001, 25 & 322.
[119] Campbell, 2004, 28 & 35; O’Rahilly and Müller, 2001, 336.
[120] Brenner et al., 1976, 561.
[121] Goodlin, 1979, D-128; Humphrey, 1964, 102.
[122] de Vries et al., 1982, 309.
[123] Hepper et al., 1991, 1109.
[124] Grand et al., 1976, 798; Pringle, 1988, 178; Sadler, 2005, 66; Spencer, 1960, 9. [Pringle reports the bowel returns into the abdomen during the ninth or tenth week.]
[125] Cunningham et al., 2001, 133.
[126] O’Rahilly and Müller, 2001, 170-171.
[127] Babler, 1991, 95; Penrose and Ohara, 1973, 201; For an overview of ridge formation in the skin of the hands see Cummins, 1929.
[128] Timor-Tritsch et al., 1990, 291.
[129] Koldovský et al., 1965, 186.
[130] O’Rahilly and Müller, 2001, 336; Wilson, 1926, 29.

Page 12


Chapter 40   3 to 4 Months (12 to 16 Weeks): Taste Buds, Jaw Motion, Rooting Reflex, Quickening

Between 11 and 12 weeks, fetal weight increases nearly 60 percent.[131]

Twelve weeks marks the end of the first third, or trimester, of pregnancy.

Distinct taste buds now cover the inside of the mouth. By birth, taste buds will remain only on the tongue and roof of the mouth.[132]

Bowel movements begin as early as 12 weeks and continue for about 6 weeks.[133]

The material first expelled from the fetal and newborn colon is called meconium (mĭ-kō'nē-ŭm).[134] It is composed of digestive enzymes, proteins, and dead cells shed by the digestive tract.[135]

By 12 weeks, upper limb length has nearly reached its final proportion to body size. The lower limbs take longer to attain their ultimate proportions.[136]

With the exception of the back and the top of the head, the body of the entire fetus now responds to light touch.[137]

Sex-dependent developmental differences appear for the first time. For instance, female fetuses exhibit jaw movement more frequently than males.[138]

In contrast to the withdrawal response seen earlier, stimulation near the mouth now evokes a turning toward the stimulus and an opening of the mouth.[139] This response is called the "rooting reflex" and it persists after birth, helping the newborn find his or her mother's nipple during breastfeeding.[140]

The face continues to mature as fat deposits begin to fill out the cheeks[141] and tooth development begins.[142]

By 15 weeks, blood-forming stem cells arrive and multiply in the bone marrow. Most blood cell formation will occur here.[143]

Although movement begins in the 6-week embryo, a pregnant woman first senses fetal movement between 14 and 18 weeks.[144] Traditionally, this event has been called quickening.[145]

Chapter 40   3 to 4 Months (12 to 16 Weeks): Taste Buds, Jaw Motion, Rooting Reflex, Quickening

Entre 11 et 12 semaines, le poids fœtal augmente de presque 60 %.

Douze semaines marquent la fin du premier tiers, ou trimestre, de la grossesse.

Des bourgeons gustatifs distincts couvrent maintenant l'intérieur de la bouche. À la naissance, les bourgeons gustatifs ne seront plus que sur la langue et le palais de la bouche.

Les selles commencent aussi tôt que 12 semaines et continuent pendant environ 6 semaines.

La première matière à être expulsée du côlon du fœtus et du nouveau-né est appelé le méconium. Il consiste en enzymes digestifs, protéines et cellules mortes éliminées par le système digestif.

À 12 semaines, la longueur des membres supérieurs a presque atteint sa proportion finale à la taille corporelle. Les membres inférieurs prennent plus longtemps pour atteindre leurs proportions définitives.

À l'exception de l'arrière et du haut de la tête, le corps entier du fœtus réagit maintenant à un léger contact.

Les différences de développement basées sur le sexe apparaissent pour la première fois. Par exemple, les fœtus féminins démontrent des mouvements de mâchoires plus fréquemment que les fœtus masculins.

En contraste avec la réaction de retrait observée plus tôt, une stimulation près de la bouche produit maintenant un mouvement vers le stimulus et l'ouverture de la bouche. Cette réaction est appelée le "réflexe des points cardinaux" et elle persiste après la naissance, aidant le nouveau-né à trouver le bout de sein de sa mère pendant l'allaitement.

Le visage continue à se définir avec des dépôts de graisse commençant à remplir les joues et les dents commencent à se former.

À 15 semaines, les cellules embryonnaires hématopoïétiques sont arrivées et se multiplient dans la moelle osseuse. Une formation complémentaire de cellules sanguines se produira ici.

Bien que les mouvements commencent chez l'embryon de 6 semaines, la femme enceinte ressent le premier mouvement fœtal entre 14 et 18 semaines. Cet événement est traditionnellement appelé la manifestation de la vie.

 

 


[131] Brenner, 1976, 561.
[132] Lecanuet and Schaal, 1996, 3; Miller, 1982, 169; Mistretta and Bradley, 1975, 80.
[133] Abramovich and Gray, 1982, 296; Ramón y Cajal and Martinez, 2003, 154-155, report visualizing defecation (bowel movements) with ultrasound in utero in all 240 fetuses studied between 15 and 41 weeks [postmenstrual age].
[134] O’Rahilly and Müller, 2001, 257; For a description of meconium by Aristotle see Grand et al., 1976, 791.
[135] Grand et al., 1976, 806.
[136] Moore and Persaud, 2003, 105.
[137] Lecanuet and Schaal, 1996, 2; Reinis and Goldman, 1980, 232.
[138] Hepper et al., 1997, 1820.
[139] Mancia, 1981, 351.
[140] Bates, 1979, 419.
[141] Poissonnet et al., 1983, 7; Poissonnet et al., 1984, 3: In a study of 488 fetuses, Poissonnet’s group found that adipose tissue (fat) appears in the face from 14 weeks postfertilization. By 15 weeks, fat appears in the abdominal wall, back, kidneys, and shoulders. By 16 weeks, fat is also present throughout the upper and lower limbs.
[142] Pringle, 1988, 178. [Thirteenth week postfertilization]
[143] Pringle, 1988, 179.
[144] Sorokin and Dierker, 1982, 720; Leader, 1995, 595: “Some pregnant women reported fetal flutters as early as 12 weeks (quickening).“ Women also tend to accurately recognize fetal movement at earlier fetal ages during second and subsequent pregnancies as compared to first pregnancies.
[145] Spraycar, 1995, 1479; Timor-Tritsch et al., 1976, 70.

Page 13


Chapter 41   4 to 5 Months (16 to 20 Weeks): Stress Response, Vernix Caseosa, Circadian Rhythms

By 16 weeks, procedures involving the insertion of a needle into the abdomen of the fetus trigger a hormonal stress response releasing noradrenalin, or norepinephrin (nor-ep'i-nef'rin), into the bloodstream.[146]

In the respiratory system, the bronchial tree is now nearly complete.[147]

A protective white substance, called vernix caseosa (ver'niks caseo'sa), now covers the fetus. Vernix protects the skin from the irritating effects of amniotic fluid.[148]

From 19 weeks fetal movement, breathing activity, and heart rate begin to follow daily cycles called circadian (ser-kā'dē-ăn) rhythms.[149]

Chapter 41   4 to 5 Months (16 to 20 Weeks): Stress Response, Vernix Caseosa, Circadian Rhythms

À 16 semaines, les procédures impliquant l'introduction d'une aiguille dans l'abdomen du fœtus déclenchent une réaction hormonale au stress libérant de la noradrénaline, ou de la norépinéphrine, dans la circulation sanguine.

Dans le système respiratoire, l'arbre bronchique est maintenant presque terminé.

Une substance blanche protectrice, appelée vernix caseosa (enduit sébacé), recouvre maintenant le fœtus. Le Vernix protège la peau contre les effets irritants du liquide amniotique.

À partir de 19 semaines, le mouvement fœtal, la respiration et le rythme cardiaque commencent à suivre les cycles quotidiens appelés les rythmes circadiens.

Chapter 42   5 to 6 Months (20 to 24 Weeks): Responds to Sound; Hair and Skin; Age of Viability

By 20 weeks the cochlea, which is the organ of hearing, has reached adult size[150] within the fully developed inner ear. From now on, the fetus will respond to a growing range of sounds.[151]

Hair begins to grow on the scalp.

All skin layers and structures are present, including hair follicles and glands.[152]

By 21 to 22 weeks after fertilization, the lungs gain some ability to breathe air.[153] This is considered the age of viability because survival outside the womb becomes possible for some fetuses.[154]

Chapter 42   5 to 6 Months (20 to 24 Weeks): Responds to Sound; Hair and Skin; Age of Viability

À 20 semaines, la cochlée, organe de l'ouïe, a atteint sa taille adulte dans l'oreille interne totalement développée. À partir de ce moment, le fœtus réagira à un grand nombre de bruits.

Les cheveux commencent à pousser sur le cuir chevelu.

Toutes les couches et structures de la peau sont présentes, y compris les follicules pileux et les glandes.

Entre 21 et 22 semaines après la fertilisation, les poumons commencent à pouvoir respirer l'air. Ce moment est considéré constituer l'âge de viabilité, la survie à l'extérieur de l'utérus étant possible pour certains fœtus.

 

 


[146] Giannakoulopoulos et al., 1999, 494 & 498-499; Glover and Fisk, 1999, 883; Smith et al., 2000, 161. Cortisol levels also rise after invasive procedures following 21 weeks postfertilization - see Giannakoulopoulos et al., 1994, 80.
[147] DiFiore and Wilson, 1994, 221-222; Pringle, 1988, 178. [There is some disagreement among experts regarding when the bronchial tree is complete. Some say completion occurs as early as 16 weeks postfertilization while others say it occurs after birth.]
[148] Campbell, 2004, 48; Moore and Persaud, 2003, 107; O’Rahilly and Müller, 2001, 168.
[149] de Vries et al., 1987, 333; Goodlin and Lowe, 1974, 349; Okai et al., 1992, 391 & 396; Romanini and Rizzo, 1995, 121; For a description of the circadian system, see Rosenwasser, 2001, 127; From Vitaterna et al., 2001, 92: Glossary: “Circadian: A term derived from the Latin phrase “circa diem,“ meaning “about a day;“ refers to biological variations or rhythms with a cycle of approximately 24 hours.“
[150] Lecanuet and Schaal, 1996, 5-6; Querleu et al., 1989, 410.
[151] Glover and Fisk, 1999, 882; Hepper and Shahidullah, 1994, F81; Querleu et al., 1989, 410; Sorokin and Dierker, 1982, 725 & 730; Valman and Pearson, 1980, 233-234.
[152] Pringle, 1988, 180.
[153] Hansen and Corbet, 1998, 542.
[154] O’Rahilly and Müller, 2001, 92, report the age of viability as 20 weeks postfertilization; Draper et al., 1999, 1094, report a survival rate of 2% at 20 weeks postfertilization, 6% at 21 weeks, and 16% at 22 weeks. Moore and Persaud, 2003, 103, report viability at 22 weeks; Wood et al., 2000, 379, report survival rates of 11% at 21 weeks, 26% at 22 weeks and 44% at 23 weeks (postfertilization weeks) based on premature birth data from the United Kingdom during 1995. Cooper et al. 1998, 976, (Figure 2) report infants with a birth weight over 500 grams experienced survival rates (all approximate) of 28% at 21 weeks postfertilization, 50% at 22 weeks, 67% at 23 weeks, and  77% at 24 weeks. Draper et al., 2003, updated their previously published survival tables for premature infants and now report an overall survival rate of 7% at 20 weeks, 15% at 21 weeks, 29% at 22 weeks, 47% at 23 weeks and 65% at 24 weeks. [All ages corrected to reflect postfertilization age.] These survival tables are available online at http://bmj.bmjjournals.com/cgi/content/full/319/7217/1093/DC1. Their methodology is described in their earlier paper (Draper et al., 1999, 1093-1094.) Note: These published survival tables reflect postmenstrual ages. Hoekstra et al., 2004, e3, report a survival rate of 66% at 23 weeks and 81% at 24 weeks “gestational age“ [not specifically defined] for premature births from 1996 to 2000 at their center in Minneapolis, Minnesota.

Page 14


Chapter 43   6 to 7 Months (24 to 28 Weeks): Blink-Startle; Pupils Respond to Light; Smell and Taste

By 24 weeks the eyelids reopen[155] and the fetus exhibits a blink-startle response.[156] This reaction to sudden, loud noises typically develops earlier in the female fetus.[157]

Several investigators report exposure to loud noise may adversely affect fetal health. Immediate consequences include prolonged increased heart rate, excessive fetal swallowing, and abrupt behavioral changes.[158] Possible long-term consequences include hearing loss.[159]

The fetal respiratory rate can rise as high as 44 inhalation-exhalation cycles per minute.[160]

During the third trimester of pregnancy, rapid brain growth consumes more than 50 percent of the energy used by the fetus. Brain weight increases between 400 and 500 percent.[161]

By 26 weeks the eyes produce tears.[162]

The pupils respond to light as early as 27 weeks.[163] This response regulates the amount of light reaching the retina[164] throughout life.

All components required for a functioning sense of smell are operational. Studies of premature babies reveal the ability to detect odors as early as 26 weeks after fertilization.[165]

Placing a sweet substance in the amniotic fluid increases the rate of fetal swallowing. In contrast, decreased fetal swallowing follows the introduction of a bitter substance. Altered facial expressions often follow.[166]

Through a series of step-like leg motions similar to walking, the fetus performs somersaults.[167]

The fetus appears less wrinkled as additional fat deposits form beneath the skin.[168] Fat plays a vital role in maintaining body temperature and storing energy after birth.

Chapter 43   6 to 7 Months (24 to 28 Weeks): Blink-Startle; Pupils Respond to Light; Smell and Taste

À 24 semaines, les paupières sont ouvertes et le fœtus réagit en clignant des yeux et en ayant un effet de surprise. Cette réaction aux bruits soudains et forts se manifeste généralement avant chez le fœtus féminin.

Plusieurs chercheurs ont indiqué que l'exposition aux sons bruyants risque d'avoir un effet néfaste sur la santé du fœtus. Les conséquences immédiates comprennent un rythme cardiaque accéléré prolongé, une déglutition excessive par le fœtus et de brusques changements de comportement. Les conséquences possibles sur le long terme comprennent la perte de l'ouïe.

La fréquence respiratoire du fœtus peut atteindre 44 cycles d'inhalation exhalation à la minute.

Pendant le troisième trimestre de la grossesse, la croissance rapide du cerveau consume plus de 50 % de l'énergie utilisée par le fœtus. Le poids du cerveau augmente de 400 à 500 %.

À 26 semaines les yeux produisent des larmes.

Les pupilles réagissent à la lumière dès les 27 semaines. Cette réaction contrôle la quantité de lumière qui atteint la rétine au cours de la vie.

Tous les éléments requis pour un sens de l'odorat actif sont opérationnels. Des études sur les bébés prématurés indiquent la capacité de détecter les odeurs dès les 26 semaines après la fertilisation.

L'ajout d'une substance sucrée dans le liquide amniotique augmente le taux de déglutition du fœtus. Par contraste, ce taux de déglutition diminue à la suite de l'introduction d'une substance amère. Des changements d'expression suivent souvent.

Par une série de mouvements de jambes ressemblant à des pas semblables à ceux d'une marche, le fœtus fait des pirouettes.

Le fœtus devient moins ridé avec la formation de dépôts graisseux supplémentaires sous la peau. La graisse joue un rôle primordial dans le maintien de la température corporelle et l'entreposage de l'énergie après la naissance.

 

 


[155] Open eyes are visualized by 4D ultrasound following 22 weeks postfertilization per Campbell 2002, 3; De Lia, 2002, personal communication; O’Rahilly and Müller, 2001, 465. For a detailed ultrastructural study of the union between the upper and lower eyelids see Andersen et al., 1967, 293.
[156] Birnholz and Benacerraf, 1983, 517 (cited by Drife, 1985, 778); See also Campbell, 2002, 3: Professor Stuart Campbell correctly points out that the eyes of the fetus are closed most of the time and a true blink requires the eyes to be open. Perhaps the “blink-startle“ response would be more accurately termed “squint-startle.“
[157] Lecanuet and Schaal, 1996, 9.
[158] Visser et al., 1989, 285.
[159] Gerhardt, 1990, 299; Petrikovsky et al., 1993, 548-549; Pierson, 1996, 21 & 26.
[160] Natale et al., 1988, 317.
[161] Growth of the human brain, 1975, 6; Mancuso and Palla, 1996, 290.
[162] Isenberg et al., 1998, 773-774.
[163] Robinson and Tizard, 1966, 52.
[164] Noback et al., 1996, 263.
[165] Lecanuet and Schaal, 1996, 3.
[166] Lecanuet and Schaal, 1996, 3; Liley, 1972, 102; Moore and Persaud, 2003, 219; Reinis and Goldman, 1980, 227.
[167] Liley, 1972, 100.
[168] England, 1983, 29.

Page 15


Chapter 44   7 to 8 Months (28 to 32 Weeks): Sound Discrimination, Behavioral States

By 28 weeks the fetus can distinguish between high- and low-pitched sounds.[169]

By 30 weeks, breathing movements are more common and occur 30 to 40 percent of the time in an average fetus.[170]

During the last 4 months of pregnancy, the fetus displays periods of coordinated activity punctuated by periods of rest. These behavioral states reflect the ever-increasing complexity of the central nervous system.[171]

Chapter 44   7 to 8 Months (28 to 32 Weeks): Sound Discrimination, Behavioral States

À 28 semaines, le fœtus sait distinguer entre les sons aigus et graves.

À 30 semaines, les mouvements de respiration sont plus fréquents et se produisent 30 à 40 % du temps chez le fœtus moyen.

Au cours des 4 derniers mois de la grossesse, le fœtus montre des périodes d'activités coordonnées, ponctuées par des périodes de repos. Ces états comportementaux sont indicatifs de la croissance continue de la complexité du système nerveux central.

Chapter 45   8 to 9 Months (32 to 36 Weeks): Alveoli Formation, Firm Grasp, Taste Preferences

By approximately 32 weeks, true alveoli (al-vē'ō-lī), or air "pocket" cells, begin developing in the lungs. They will continue to form until 8 years after birth.[172]

At 35 weeks the fetus has a firm hand grasp.[173]

Fetal exposure to various substances appears to affect flavor preferences after birth. For instance, fetuses whose mothers consumed anise, a substance which gives licorice its taste, showed a preference for anise after birth. Newborns without fetal exposure disliked anise.[174]

Chapter 45   8 to 9 Months (32 to 36 Weeks): Alveoli Formation, Firm Grasp, Taste Preferences

À environ 32 semaines, de vraies alvéoles, ou cellules à "poche" d'air ont commencées à se développer dans les poumons. Elles continueront à se former jusqu'à l'âge de 8 ans.

À 35 semaines, le fœtus a un saisissement de main ferme.

L'exposition du fœtus à diverses substances semble donner lieu à des préférences de goûts après la naissance. Par exemple, les fœtus dont la mère a consommé de l'anis, substance qui donne son goût au réglisse, ont démontré une préférence pour l'anis après la naissance. Les nouveau-nés sans exposition fœtale n'aimaient pas l'anis.

Chapter 46   9 Months to Birth (36 Weeks through Birth)

The fetus initiates labor[175] by releasing large amounts of a hormone called estrogen (es´trō-jen)[176] and thus begins the transition from fetus to newborn.

Labor is marked by powerful contractions of the uterus, resulting in childbirth.[177]

From fertilization to birth and beyond, human development is dynamic, continuous, and complex. New discoveries about this fascinating process increasingly show the vital impact of fetal development on lifelong health.

As our understanding of early human development advances, so too will our ability to enhance health––both before and after birth.

Chapter 46   9 Months to Birth (36 Weeks through Birth)

Le fœtus fait des efforts en libérant des quantités importantes d'une hormone appelée l'estrogène et commence ainsi la transition entre fœtus et nouveau-né.

L'effort se distingue par de fortes contractions de l'utérus, qui résultent en l'accouchement.

De la fertilisation à la naissance et au-delà, le développement de l'être humain est dynamique, continu et complexe. De nouvelles découvertes concernant ce processus fascinant démontrent de plus en plus l'impact primordial du développement fœtal sur la santé pour la vie entière.

Nos avances dans la compréhension du développement de l'être humain augmenteront notre capacité d'améliorer la santé-- avant aussi bien qu'après la naissance.

 

 


[169] Glover and Fisk, 1999, 882; Hepper and Shahidullah, 1994, F81.
[170] Connors et al., 1989, 932; de Vries et al., 1985, 117; Patrick et al., 1980, 26 & 28; Visser et al., 1992, 178.
[171] DiPietro et al., 2002, 2: “One of the hallmarks of development before birth is the coalescence of patterns of fetal and behavioral and cardiac function into behavioral states, which is widely viewed as reflective of the developing integration of the central nervous system.“
[172] Lauria et al., 1995, 467.
[173] Moore and Persaud, 2003, 108.
[174] Schaal et al., 2000, 729.
[175] Liley, 1972, 100.
[176] Moore and Persaud, 2003, 131.
[177] Cunningham et al., 2001, 252.

Page 16


Appendix A − Calculations

To the Sun and Back: Determining the Length of DNA in an Adult

Given:

1.      The DNA molecule measures 3.4×10-9 meters per 10 base pairs.[178]

2.      There are 3 billion (3×109) base pairs per cell.

3.      There are an estimated 100 trillion (1014) cells per adult.

4.      The distance from the earth to the sun is approximately 93 million miles.

5.      There are 2.54 centimeters (cm) per inch.

Step 1   Compute the length of DNA in a single cell:

3.4×10-9 meters/10 base pairs ×  3×109 base pairs/cell = 1.02 meters of DNA per cell

Step 2   Compute the total length of DNA in an adult’s 100 trillion cells:

1.02 meters of DNA/cell × 1014 cells  =  1.02×1014 meters of DNA per adult*

Step 3   Convert 1.02×1014 meters to miles:

1.02×1014 meters × 100 cm/meter × 1inch/2.54 cm × 1 foot/12 inches × 1 mile/5,280 feet
 = 6.3379×1010miles of DNA

Step 4   Compute how many round trips from the earth to the sun:

6.3379×1010 miles of DNA ÷ (93,000,000 miles/trip × 2 trips/round trip) =

340 round trips between earth and sun

Therefore, the DNA in a single adult, if oriented in linear fashion, would exceed 63 billion miles in length. This is long enough to extend from the earth to the sun and back––340 times.

* Approximately 25 trillion red blood cells are present in the adult.[179] It should be noted that red blood cells contain DNA early in their maturation phase but this DNA degenerates and is not present in the mature form. This calculation includes the DNA from red blood cells.

 

 


[178] Lodish et al., 2000, 104.
[179] Guyton and Hall, 2000, 2.

Page 17


A Tight Squeeze: Appreciating the Number of Bases Contained in the DNA of a Single Cell

The following page contains a list of 3,808 capital letters each of which represents a single base.

Given:

1.      A, G, T, and C each represent a base within the DNA of a single cell.

2.      Each line contains 68 letters without spaces representing 68 bases.

3.      Each page contains 56 lines. (Page size: 8½ × 11 inches, font: Times New Roman, font size: 10, spaces between letters: none, lines: single spaced, margins: as shown)

4.      Each cell contains 3 billion base pairs equaling 6 billion bases.

The calculation of the number of pages required to list all DNA bases in a single cell is as follows:

68 bases/line × 56 lines/page  =  3,808 bases/page

6,000,000,000 bases/cell ÷ 3,808 bases/page  =  1,575,630 pages/cell



ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG
ATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCG

Page 18


Climate Control: Approximating the Normal Range of Embryonic and Fetal Body Temperature

Given:

1.      The placenta maintains embryonic and fetal temperature between 0.5 ºC and 1.5 ºC above maternal core temperature.[180]

2.      Maternal core temperature is approximately 99.6º Fahrenheit.

3.      The formula to convert temperature from Fahrenheit (ºF) to Celsius (ºC) is:

ºC = 5/9 (ºF - 32)

The calculation to compute the range of embryonic and fetal body temperature is as follows:

Step 1             Convert maternal core temperature to Celsius:

Maternal core temperature in ºC: ºC = 5/9 (99.6 - 32) = 37.56 ºC

Step 2             Compute lower and upper ranges of fetal body temperature in Celsius:

Lower range (Celsius) = maternal core temperature + 0.5 ºC = 37.56 + 0.5 = 38.2 ºC

Upper range (Celsius) = maternal core temperature + 1.5 ºC = 37.56 + 1.5 = 39.2 ºC

Step 3             Convert results to Fahrenheit:

ºC = 5/9 (ºF - 32)                     9/5 ºC = (ºF - 32)                     ºF = 9/5 ºC + 32

Substituting to find the lower limit of fetal body temperature

ºF = 9/5 ºC + 32                      ºF = 9/5 (38.16) + 32   ºF = 100.7º

Substituting to find the upper limit of fetal body temperature

ºF = 9/5 ºC + 32 ºF = 9/5 (39.16) + 32   ºF = 102.5º

Summary of Normal Embryonic and Fetal Body Temperature Range

  ºF ºC
Lower Limit 100.7 38.2
Upper Limit 102.5 39.2

 

 


[180] Liley, 1972, 101.

Page 19


The Beat Goes On: Estimating the Total Number of Heartbeats Before Birth and Beyond

The Embryonic Period

Week # Average Heart Rate
(Beats per Minute)
Beats per Week Running Total
4 113.00 1,139,040 1,139,040
5 132.00 1,330,560 2,469,600
6 151.00 1,522,080 3,991,680
7 170.00 1,713,600 5,705,280
8 169.03 1,703,845 7,409,125
(Approximately 7.41 million beats during the embryonic period)

Various authors agree the heart rate peaks at 7 weeks. Reported heart rates vary however. Van Heeswijk et al. report a peak heart rate of 167 ± 8 beats per minute (bpm)[181] while Leeuwen et al. report a peak rate of 175 bpm.[182] Van Lith et al. report the median fetal heart rate peaks at 177 bpm at 7 weeks.[183] One hundred seventy (170) bpm has been chosen as the peak heart rate for illustration purposes in this calculation. The heart rate for the various weeks from 7 through 38 have been calculated via linear interpolations[184] assuming heart rates of 170 bpm at 7 weeks and 140 bpm at term or 38 weeks.[185]

(Note: Heart rates are estimated. Living conditions and individual experience can and will vary.)

The Fetal Period

Week # Average Heart Rate
(Beats per Minute)
Beats per Week Running Total
9 168.06 1,694,090 9,103,216
10 167.10 1,684,336 10,787,551
11 166.13 1,674,581 12,462,132
12 165.16 1,664,826 14,126,958
13 164.19 1,655,071 15,782,029
14 163.23 1,645,316 17,427,346
15 162.26 1,635,562 19,062,907
16 161.29 1,625,807 20,688,714
17 160.32 1,616,052 22,304,766
18 159.35 1,606,297 23,911,063
19 158.39 1,596,542 25,507,605
20 157.42 1,586,787 27,094,393
21 156.45 1,577,033 28,671,425
22 155.48 1,567,278 30,238,703
23 154.52 1,557,523 31,796,226
24 153.55 1,547,768 33,343,994
25 152.58 1,538,013 34,882,008
26 151.61 1,528,259 36,410,266
27 150.65 1,518,504 37,928,770
28 149.68 1,508,749 39,437,519
29 148.71 1,498,994 40,936,513
30 147.74 1,489,239 42,425,752
31 146.77 1,479,484 43,905,237
32 145.81 1,469,730 45,374,966
33 144.84 1,459,975 46,834,941
34 143.87 1,450,220 48,285,161
35 142.90 1,440,465 49,725,626
36 141.94 1,430,710 51,156,337
37 140.97 1,420,956 52,577,292
38 140.00 1,411,201 53,988,493
(Approximately 54 million beats before birth)

Counting the Beats of a Lifetime

The Postnatal Period from Birth to 80 Years

Year # Average Heart Rate
(Beats per Minute)*[186]
Beats per Year Running Total
1 120 63,115,200 63,115,200
2 110 57,855,600 120,970,800
3 103 54,173,880 175,144,680
4 103 54,173,880 229,318,560
5 103 54,173,880 283,492,440
6 103 54,173,880 337,666,320
7 95 49,966,200 387,632,520
8 95 49,966,200 437,598,720
9 95 49,966,200 487,564,920
10 95 49,966,200 537,531,120
11 85 44,706,600 582,237,720
12 85 44,706,600 626,944,320
13 85 44,706,600 671,650,920
14 85 44,706,600 716,357,520
15 80 42,076,800 758,434,320
16 80 42,076,800 800,511,120
17 75 39,447,000 839,958,120
18 75 39,447,000 879,405,120
19 70 36,817,200 916,222,320
20 70 36,817,200 953,039,520
21-80 70 2,209,032,000 3,162,071,520
(Approximately 3.16 billion beats from birth to age 80 years)
Estimated Total Heart Beats From the
3-Week Embryo to Age 80 Years
3,216,060,000
(Approximately 3.2 Billion Beats Per Lifetime)

 

 


[181] van Heeswijk et al., 1990, 153.
[182] Leeuwen et al., 1999, 265.
[183] van Lith et al., 1992, 741.
[184] See Appendix A.
[185] DiPietro et al., 1996, 2559.
[186] Age appropriate pediatric heart rates adapted from Bates, 1987, 541.

Page 20


Appendix B − Relating Embryonic Age & Stage

O'Rahilly and Müller's Age Assignments vs. Carnegie Stages, 1987 to 2001

Carnegie
Stage
Number
of Somites
Greatest
Length (mm)
1987 Age [187]
Convention
(in PF Days*)
1999 Age [188]
Convention
(in PF Days*)
2001 Age [189]
Convention
(in PF Days*)
1   0.1 - 0.15 1 - 1
2   0.1 - 0.2 1½ - 3 2 - 3 2 - 3
3   0.1 - 0.2 4 4 - 5 4 - 5
4   0.1 - 0.2 5 - 6 6 6
5   0.1 - 0.2 7 - 12 7 - 12 -
5a   0.1 7 - 8 - 7 - 8
5b   0.1 9 - 9
5c   0.15 - 0.2 11 - 12 - 11 - 12
6   0.2 13 17 17
6a   - - - -
6b   - - - -
7   0.4 16 19 19
8   1.0 - 1.5 18 23 -
8a   - - - 23
8b   - - - 23
9 1-3 1.5 - 2.5 20 26 25
10 4-12 2 - 3.5 22 29 28
11 13-20 2.5 - 4.5 24 30 29
12 21-29 3 - 5 26 31 30
13 30+ 4 - 6 28 32 32
14   5 - 7 32 33 33
15   7 - 9 33 35 36
16   8 - 11 37 37 38
17   11 - 14 41 40 41
18   13 - 17 44 42 44
19   16 - 18 47½ 44 46
20   18 - 22 50½ 47 49
21   22 - 24 52 50 51
22   23 - 28 54 52 53
23   27 - 31 56½ 56 56

* PF Days = Postfertilization Days

 

There is international agreement among embryologists that human development during the embryonic period be divided into 23 stages (which were initially proposed by Mall, described by Streeter, and amended by O'Rahilly and Müller in 1987).[190] These have come to be known as Carnegie Stages. Particular internal and external features are required for inclusion in any given embryonic stage. These stages are independent of age and length and the use of the term 'stage' should be reserved for reference to this system per O'Rahilly and Müller in multiple publications.

Along with nearly-universal acceptance of the human embryonic staging system, a variety of age assignments have been proposed for each embryonic stage. Streeter believed the embryonic period spanned a 47- to 48-day period instead of the 56-day period accepted today. The Endowment for Human Development adopts the convention set forth by O'Rahilly and Müller in 1987 which has received widespread, but not universal, acceptance. O'Rahilly and Müller have since proposed amending this convention in light of transvaginal ultrasound data through a personal communication with Dr. Josef Wisser in 1992.[191] These alternate proposals are provided for the interested reader.

For instance, the onset of embryonic cardiac contraction (onset of the heartbeat) has long been described as a Carnegie Stage 10 or possibly a late Stage 9 event.[192] We report this event occurring at an age of 3 weeks, 1 day (22 days) postfertilization using the 1987 convention. Others may report this occurrence at 28 or 29 days as shown above. Of interest is a paper by Wisser and Dirschedl who reported using transvaginal ultrasound to visualize the embryonic heartbeat 23 days postfertilization in two embryos fertilized in vitro “with exactly known … age” and “in embryos from 2 mm of greatest length onwards.”[193] This finding most closely coincides with the 1987 age convention. Schats et al. reported the earliest cardiac activity at 25 days after follicle aspiration in embryos conceived in vitro.[194] Tezuka et al. reported the earliest cardiac activity at 23 days postfertilization in embryos conceived naturally.[195]

There is considerable variation in normal human development during the postnatal period. The prenatal period is no different with variations in the size, rate of growth, and order of appearance of some structures or functions. No one knows the exact age range for each stage with absolute certainty. These approximations may change in the future as additional knowledge is gained through careful, published research.

 

 


[187] O'Rahilly and Müller, 1987, 3. Greatest length data is essentially uniform throughout the various texts.
[188] O'Rahilly and Müller, 1999a. Various pages.
[189] O'Rahilly and Müller, 2001, 490. Table A-1 – essentially unchanged from the 1996 edition. The 2001 convention differs only slightly from the 1999 convention as shown.
[190] O'Rahilly and Müller, 2001, 3.
[191] O'Rahilly and Müller, 1999a, 13.
[192] See footnote #51.
[193] Quotes from Wisser and Dirschedl, 1994, 108.
[194] Schats et al., 1990, 989.
[195] Tezuka, 1991, 211.

Page 21


Bibliography

Abramovich D, Gray E. 1982. Physiological fetal defecation in midpregnancy. Obstet Gynecol. 60(3):294-296.
Search EHD Reference/Abstract

Adams WE. 1960. Early human development. N Z Med J. 59:7-17.
Search EHD Reference/Abstract

Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 1998. Essential cell biology. New York: Garland.
Search EHD

Andersen H, Ehlers N, Matthiessen ME. 1965. Histochemistry and development of the human eyelids. Acta Opthalmol. 43(5):642-668.
Search EHD Reference/Abstract

Andersen H, Ehlers N, Matthiessen ME, Claesson MH. 1967. Histochemistry and development of the human eyelids II. Acta Opthalmol. 45(3):288-293.
Search EHD Reference/Abstract

Angtuaco TL, Collins HB, Quirk JG. 1999. The fetal genitourinary tract. Semin Roentgenol. 34(1):13-28.
Search EHD Reference/Abstract

Ayto J. 1990. Dictionary of word origins. New York: Arcade.
Search EHD

Babler WJ. 1991. Embryologic development of epidermal ridges and their configurations. In: Plato CC, Garruto RM, Schaumann BA, editors. Dermatoglyphics: science in transition. New York: Wiley-Liss; p. 95-112.
Search EHD Reference/Abstract

Bartelmez GW. 1923. The subdivisions of the neural folds in man. J Comp Neurol. 35(3):231-247.
Search EHD

Bartelmez GW, Dekaban AS. 1962. The early development of the human brain. Carnegie Institution of Washington. Contrib Embryol. 35:13-32.
Search EHD

Bates B. 1979. A guide to physical examination. 2nd ed. Philadelphia: J.B. Lippincott.
Search EHD

Bates B. 1987. A guide to physical examination. 4th ed. Philadelphia: J.B. Lippincott.
Search EHD

Bernstine RL. 1961. Fetal electrocardiography and electroencephalography. Springfield: Charles C. Thomas.
Search EHD

Bernstine RL, Borkowski WJ, Price AH. 1955. Prenatal fetal electroencephalography. Am J Obstet Gynecol. 70(3):623-30.
Search EHD Reference/Abstract

Birnholz JC, Stephens JC, Faria M. 1978. Fetal movement patterns: a possible means of defining neurologic developmental milestones in utero. Am J Roentgenol. 130(3):537-540.
Search EHD Reference/Abstract

Birnholz JC, Benacerraf BR. 1983. The development of human fetal hearing. Science. 222(4623):516-518.
Search EHD Reference/Abstract Full Text

Borkowski WJ, Bernstine RL. 1955. Electroencephalography of the fetus. Neurology. 5(5):362-365.
Search EHD Reference/Abstract

Brenner WE, Edelman DA, Hendricks CH. 1976. A standard of fetal growth for the United States of America. Am J Obstet Gynecol. 126(5):555-564.
Search EHD Reference/Abstract

Campbell J, Wathen N, Perry G, Soneji S, Sourial N, Chard T. 1993. The coelomic cavity: an important site of materno-fetal nutrient exchange in the first trimester of pregnancy. Br J Obstet Gynaecol. 100(8):765-767.
Search EHD Reference/Abstract

Campbell S. 2002. 4D, or not 4D: that is the question. Ultrasound Obstet Gynecol. 19(1):1-4.
Search EHD Reference/Abstract Full Text

Campbell S. 2004. Watch me grow: A unique 3-dimensional week-by-week look at your baby’s behavior and development in the womb. New York: St. Martins.
Search EHD

Carlson BM. 2004. Human embryology & developmental biology. 3rd ed. Philadelphia: Mosby.
Search EHD

Chartier M, Roger M, Barrat J, Michelon B. 1979. Measurement of plasma human chorionic gonadotropin (hCG) and ß-hCG activities in the late luteal phase: evidence of the occurrence of spontaneous menstrual abortions in infertile women. Fertil Steril. 31(2):134-137.
Search EHD Reference/Abstract

Connors G, Hunse C, Carmichael L, Natale R, Richardson B. 1989. Control of fetal breathing in the human fetus between 24 and 34 weeks' gestation. Am J Obstet Gynecol. 160(4):932-938.
Search EHD Reference/Abstract

Cooper M, O'Rahilly R. 1971. The human heart at seven postovulatory weeks. Acta Anat. 79(2):280-299.
Search EHD Reference/Abstract

Cooper TR, Berseth CL, Adams JM, Weisman LE. 1998. Actuarial survival in the premature infant less than 30 weeks' gestation. Pediatrics. 101(6):975-978.
Search EHD Reference/Abstract Full Text

Cullen MT, Reece EA, Whetham J, Hobbins JC. 1990. Embryoscopy: description and utility of a new technique. Am J Obstet Gynecol. 162:82-86.
Search EHD Reference/Abstract

Cummins H. 1929. The topographic history of the volar pads (walking pads; tasballen) in the human embryo. Carnegie Institution of Washington. Contrib Embryol. 20:103-126.
Search EHD

Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD, editors. 2001. Williams Obstetrics. 21st ed. New York: McGraw-Hill.
Search EHD

Page 22


De Lia, Julian E., M.D. Medical Director of International Institute for the Treatment of Twin to Twin Transfusion Syndrome, personal communication, November 2002.
Search EHD

de Vries JIP, Visser GHA, Prechtl HFR. 1982. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev. 7(4):301-322.
Search EHD Reference/Abstract

de Vries JIP, Visser GHA, Prechtl HFR. 1985. The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev. 12(2):99-120.
Search EHD Reference/Abstract

de Vries JIP, Visser GHA, Prechtl HFR. 1988. The emergence of fetal behaviour. III. Individual differences and consistencies. Early Hum Dev. 16(1):85-103.
Search EHD Reference/Abstract

de Vries JIP, Visser GHA, Mulder EJH, Prechtl HFR. 1987. Diurnal and other variations in fetal movement and heart rate patterns at 20-22 weeks. Early Hum Dev. 15(6):333-348.
Search EHD Reference/Abstract

de Vries PA, Saunders JB. 1962. Development of the ventricles and spiral outflow tract in the human heart. Carnegie Institution of Washington. Contrib Embryol. 37:87-114.
Search EHD

DiFiore JW, Wilson JM. 1994. Lung development. Semin Pediatr Surg. 3(4):221-232.
Search EHD Reference/Abstract

DiPietro JA, Costigan KA, Pressman EK. 2002. Fetal state concordance predicts infant state regulation. Early Hum Dev. 68(1):1-13.
Search EHD Reference/Abstract Full Text

DiPietro JA, Hodgson DM, Costigan KA, Hilton SC. 1996. Fetal neurobehavioral development. Child Dev. 67(5):2553-2567.
Search EHD Reference/Abstract

Dorland WAN, Bartelmez GW. 1922. Clinical and embryological report of an extremely early tubal pregnancy; together with a study of decidual reaction, intra-uterine and ectopic. II. Am J Obstet Gynecol. 4(3):372-386.
Search EHD

Drife JO. 1985. Can the fetus listen and learn? Br J Obstet Gynaecol. 92(8):777-778.
Search EHD Reference/Abstract

Draper ES, Manktelow B, Field DJ, James D. 1999. Prediction of survival for preterm births by weight and gestational age: retrospective population based study. Br Med J. 391(7217):1093-97.
Search EHD Reference/Abstract Full Text

Draper ES, Manktelow B, Field DJ, James D. 2003. Prediction of survival for preterm births. Br Med J.; 327(7419):872. [Full text article available from: http://bmj.bmjjournals.com/cgi/eletters/319/7217/1093/DC1#37045; Survival tables available from: http://bmj.bmjjournals.com/cgi/content/full/319/7217/1093/DC1. [cited 2004 Feb 2]
Search EHD Reference/Abstract Full Text

England MA. 1983. Color atlas of life before birth, normal fetal development. Chicago: Year Book Medical.
Search EHD

Fowler CL, Pokorny WJ, Wagner ML, Kessler MS. 1988. Review of bronchopulmonary foregut malformations. J Pediatr Surg. 23(9):793-797.
Search EHD Reference/Abstract

Florian J. 1930. The formation of the connecting stalk and the extension of the amniotic cavity towards the tissue of the connecting stalk in young human embryos. J Anat. 64:454-476.
Search EHD

Gardner E, O'Rahilly R. 1976. The nerve supply and conducting system of the human heart at the end of the embryonic period proper. J Anat. 121(3):571-587.
Search EHD Reference/Abstract Full Text

Gasser RF. 1975. Atlas of human embryos. Maryland: Harper & Row.
Search EHD Full Text

Gerhardt KJ. 1990. Prenatal and perinatal risks of hearing loss. Semin Perinatol. 14(4):299-304.
Search EHD Reference/Abstract

Giannakoulopoulos X, Sepulveda W, Kourtis P, Glover V, Fisk NM. 1994. Fetal plasma cortisol and β-endorphin response to intrauterine needling. Lancet. 344(8915):77-81.
Search EHD Reference/Abstract

Giannakoulopoulos X, Teixeira J, Fisk N, Glover V. 1999. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 45(4 Pt 1):494-499.
Search EHD Reference/Abstract Full Text

Gilbert-Barness E, Debich-Spicer D. 1997. Cardiovascular system. In: Gilbert-Barness, editor. Potter's Pathology of the Fetus and Infant. Vol 1. St. Louis: Mosby.
Search EHD

Gilmour JR. 1941. Normal haemopoiesis in intra-uterine and neonatal life. J Pathol Bacteriol. 52:25-55.
Search EHD

Gittenger-de Groot AC, Bartelings MM, Poelmann RE. 2000. Normal and abnormal cardiac development. In: Allan L, Hornberger LK, Sharland G, editors. Textbook of fetal cardiology. London: Greenwich Medical Media Limited; p. 15-27.
Search EHD

Glover V, Fisk N. 1999. Fetal pain: implications for research and practice. Br J Obstet Gynaecol. 106(9):881-886.
Search EHD Reference/Abstract

Goodlin RC. 1979. Care of the fetus. New York: Masson.
Search EHD

Goodlin RC, Lowe EW. 1974. Multiphasic fetal monitoring, a preliminary evaluation. Am J Obstet Gynecol. 119(3):341-357.
Search EHD Reference/Abstract

Grand RJ, Watkins JB, Torti FM. 1976. Development of the human gastrointestinal tract. A review. Gastroenterology. 70(5 Pt. 1):790-810.
Search EHD Reference/Abstract

Gray DJ, Gardner E, O'Rahilly R. 1957. The prenatal development of the skeleton and joints of the human hand. Am J Anat. 101(2):169-223.
Search EHD Reference/Abstract

Growth of the human brain: some further insights. 1975. Nutr Rev. 33(1):6-7.
Search EHD Reference/Abstract

Guyton AC, Hall JE. 2000. Textbook of medical physiology. 10th ed. Philadelphia: W.B. Saunders.
Search EHD

Page 23


Hamilton WJ. 1949. Early stages of human development. Ann R Coll Surg Eng. 4:281-294.
Search EHD

Hamilton WJ, Boyd JD. 1960. Development of the human placenta in the first three months of gestation. J Anat. 94:297-328.
Search EHD Reference/Abstract Full Text

Hamlin H. 1964. Life or death by EEG. JAMA. 90(2):112-114.
Search EHD Reference/Abstract

Hansen T, Corbet A. 1998. Lung development and function. In: Taeusch HW, Ballard RA, Fletcher J, editors. Avery's diseases of the newborn. W.B. Saunders; p. 541-542.
Search EHD

Harris JWS, Ramsey EM. 1966. The morphology of human uteroplacental vasculature. Carnegie Institution of Washington. Contrib Embryol. 38:43-58.
Search EHD

Hepper PG, Shahidullah BS. 1994. Development of fetal hearing. Arch Dis Child. 71(2):F81-F87.
Search EHD Reference/Abstract

Hepper PG, Shahidullah S, White R. 1991. Handedness in the human fetus. Neuropsychologia. 29(11):1107-1111.
Search EHD Reference/Abstract Full Text

Hepper PG, Shannon EA, Dornan JC. 1997. Sex differences in fetal mouth movements. Lancet. 350(9094):1820-1821.
Search EHD Reference/Abstract

Hepper PG, McCartney GR, Shannon EA. 1998. Lateralised behavior in first trimester human foetuses. Neuropsychologia. 36(6):531-534.
Search EHD Reference/Abstract Full Text

Hertig AT, Rock J. 1944. On the development of the early human ovum, with special reference to the trophoblast of the pre-villous stage: a description of 7 normal and 5 pathologic human ova. Am J Obstet Gynecol. 47(2):149-184.
Search EHD

Hertig AT, Rock J. 1945. Two human ova of the pre-villous stage, having a developmental age of about seven and nine days respectively. Carnegie Institution of Washington. Contrib Embryol. 200:67-84.
Search EHD

Hertig AT, Rock J. 1949. Two human ova of the pre-villous stage, having a developmental age of about eight and nine days respectively. Carnegie Institution of Washington. Contrib Embryol. 221:171-186.
Search EHD

Hertig AT, Rock J. 1973. Searching for early fertilized human ova. Gynecol Invest. 4:121-139.
Search EHD Reference/Abstract

Hertig AT, Rock J, Adams EC. 1956. A description of 34 human ova within the first 17 days of development. Am J Anat. 98(3):435-493.
Search EHD Reference/Abstract

Hertig AT. 1968. Human trophoblast. Springfield: Thomas.
Search EHD

Hoekstra RE, Ferrara B, Couser RJ, Payne NR, Connett JE. 2004. Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks' gestational age at a tertiary center. Pediatrics. 113(1 Pt 1):e1-e6.
Search EHD Reference/Abstract Full Text

Hogg ID. 1941. Sensory nerves and associated structures in the skin of human fetuses of 8 to 14 weeks of menstrual age correlated with functional capability. J Comp Neur. 75:371-410.
Search EHD

Humphrey T. 1964. Growth and maturation of the brain - some correlations between the appearance of human fetal reflexes and the development of the nervous system. In: Dominick P, Purpura DP, Schadé JP, editors. Progress in brain research, Vol 4. Amsterdam: Elsevier; p. 93-135.
Search EHD

Humphrey T. 1970. The development of human fetal activity and its relation to postnatal behavior. Advances in child development and behavior, Vol 5. Reese HW, Lipsitt LP, editors. New York: Academic.
Search EHD Reference/Abstract

Humphrey T, Hooker D. 1959. Double simultaneous stimulation of human fetuses and the anatomical patterns underlying the reflexes elicited. J Comp Neurol. 112:75-102.
Search EHD Reference/Abstract

Humphrey T, Hooker D. 1961. Reflexes elicited by stimulating perineal and adjacent areas of human fetuses. Trans Am Neurol Assoc. 86:147-152.
Search EHD Reference/Abstract

Isenberg SJ, Apt L, McCarty J, Cooper LL, Lim L, Signore MD. 1998. Development of tearing in preterm and term neonates. Arch Ophthalmol. 116(6):773-776.
Search EHD Reference/Abstract Full Text

James T. 1970. Cardiac conduction system: fetal and postnatal development. Am J Cardiol. 25(2):213-226.
Search EHD Reference/Abstract Full Text

Jordaan H. 1979. Development of the central nervous system in prenatal life. Obstet Gynecol. 53(2):146-150.
Search EHD Reference/Abstract

Karmody CS, Annino DJ. 1995. Embryology and anomalies of the external ear. Facial Plast Surg. 2(4):251-256.
Search EHD Reference/Abstract

Koldovský O, Heringová A, Jirsová V, Jirásek JE, Uher J. 1965. Transport of glucose against a concentration gradient in everted sacs of jejunum and ileum of human fetuses. Gastroenterology. 48(2):185-187.
Search EHD Reference/Abstract

Kurjak A, Chervenak FA, editors. 1994. The fetus as a patient. New York: Parthenon.
Search EHD Reference/Abstract

Kurjak A, Kupesic S, Kostovic L. 1994. Vascularization of yolk sac and vitelline duct in normal pregnancies studied by transvaginal color and pulsed doppler. J Perinat Med. 22:433-440.
Search EHD Reference/Abstract

Page 24


Laffont J. 1982. Embryology of the brain. J Neuroradiol. 9:5-14.
Search EHD Reference/Abstract

Lauria MR, Gonik B, Romero R. 1995. Pulmonary hypoplasia: pathogenesis, diagnosis and antenatal prediction. Obstet Gynecol. 86(3):467-475.
Search EHD Reference/Abstract Full Text

Leader LR. 1995. Studies in fetal behaviour. Br J Obstet Gynaecol. 102(8):595-597.
Search EHD Reference/Abstract

Lecanuet JP, Schaal B. 1996. Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol. 68(1-2):1-23.
Search EHD Reference/Abstract

Leeuwen PV, Lange S, Betterman H, Grönemeyer D, Hatzmann W. 1999. Fetal heart rate variability and complexity in the course of pregnancy. Early Hum Dev. 54(3):259-269.
Search EHD Reference/Abstract Full Text

Liley AW. 1972. The foetus as a personality. Aust N Z J Psychiatry. 6(2):99-105.
Search EHD Reference/Abstract

Lipschutz JH. 1998. Molecular development of the kidney: a review of the results of gene disruption studies. Am J Kidney Dis. 31(3):383-397.
Search EHD Reference/Abstract Full Text

Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 2000. Molecular cell biology. 4th ed. New York: W.H. Freeman.
Search EHD

Mall FP. 1918. On the age of human embryos. Am J Anat. 23:397-422.
Search EHD

Mancia M. 1981. On the beginning of mental life in the foetus. Int J Psychoanal. 62:351-357.
Search EHD Reference/Abstract

Mancuso S, Palla G. 1996. Intrauterine nutrition and development. Adv Contracept. 12(4):285-291.
Search EHD Reference/Abstract

McCartney G, Hepper P. 1999. Development of lateralized behavior in the human fetus from 12 to 27 weeks' gestation. Dev Med Child Neurol. 41(2):83-86.
Search EHD Reference/Abstract

McCray PB. 1993. Spontaneous contractility of human fetal airway smooth muscle. Am J Respir Cell Mol Biol. 8(5):573-580.
Search EHD Reference/Abstract

Miller AJ. 1982. Deglutition. Physiol Rev. 62(1):129-181.
Search EHD Reference/Abstract Full Text

Mistretta CM, Bradley RM. 1975. Taste and swallowing in utero. Br Med Bull. 31(1):80-84.
Search EHD Reference/Abstract Full Text

Moore KL. 1980. Clinically oriented anatomy. Baltimore: Williams & Wilkins.
Search EHD

Moore KL, Persaud TVN. 2003. The developing human, clinically oriented embryology. 7th ed. Philadelphia: W.B. Saunders.
Search EHD

Morton H, Rolfe BE, Cavanaugh AC. 1992. Early pregnancy factor. Semin Reprod Endocrinol. 10(2):72-82.
Search EHD

Müller F, O'Rahilly R. 1983. The first appearance of the major divisions of the human brain at stage 9. Anat Embryol. 168(3):419-432.
Search EHD Reference/Abstract

Nahhas F, Barnea E. 1990. Human embryonic origin early pregnancy factor before and after implantation. Am J Reprod Immunol. 22(3-4):105-108.
Search EHD Reference/Abstract

Natale R, Nasello-Paterson C, Connors G. 1988. Patterns of fetal breathing activity in the human fetus at 24 to 28 weeks of gestation. Am J Obstet Gynecol. 158(2):317-321.
Search EHD Reference/Abstract

National Institutes of Health (NIH). http://www.nih.gov/. Bethesda: NIH; public domain. [updated 2002 Sep; cited 2004 Feb 2].  Available from: http://stemcells.nih.gov/infoCenter/stemCellBasics.asp#3
Search EHD

Natsuyama E. 1991. In utero behavior of human embryos at the spinal-cord stage of development. Biol Neonate. 60(Suppl 1):11-29.
Search EHD Reference/Abstract

Navaratnam V. 1991. Organisation and reorganisation of blood vessels in embryonic development. Eye. 5(Pt 2):147-150.
Search EHD Reference/Abstract

Noback CR, Strominger NL, Demarest RJ. 1996. The human nervous system. 5th ed. Baltimore: Williams & Wilkins.
Search EHD

Page 25


Okai T, Kozuma S, Shinozuka N, Kuwabara Y, Mizuno M. 1992. A study on the development of sleep-wakefulness cycle in the human fetus. Early Hum Dev. 29(1-3):391-396.
Search EHD Reference/Abstract

O'Rahilly R. 1957. The development of joints. Ir J Med Sci. 171(382):456-61.
Search EHD Reference/Abstract

O'Rahilly R. 1966. The early development of the eye in staged human embryos. Carnegie Institution of Washington. Publ. 626. Contrib Embryol. 38:1-42.
Search EHD

O'Rahilly R. 1977a. The development of the vagina in the human. Birth Defects Orig Artic Ser. 13(2):123-136.
Search EHD Reference/Abstract

O'Rahilly R. 1977b. Prenatal human development. In: Wynn RM, editor. The biology of the uterus. 2nd ed. New York: Plenum.
Search EHD

O'Rahilly R. 1978. The timing and sequence of events in the development of the human digestive system and associated structures during the embryonic period proper. Anat Embryol. 153(2):123-136.
Search EHD Reference/Abstract

O'Rahilly R, Boyden EA. 1973. The timing and sequence of events in the development of the human respiratory system during the embryonic period proper. Z Anat Entwicklungsgesch.. 141(3):237-250.
Search EHD Reference/Abstract

O'Rahilly R, Gardner E. 1972. The initial appearance of ossification in staged human embryos. Am J Anat. 134(3):291-308.
Search EHD Reference/Abstract

O'Rahilly R, Gardner E. 1975. The timing and sequence of events in the development of the limbs in the human embryo. Anat Embryol. 148(1):1-23.
Search EHD Reference/Abstract

O'Rahilly R, Gardner E. 1979. The initial development of the human brain. Acta Anat. 104(2):123-133.
Search EHD Reference/Abstract

O'Rahilly R, Müller F. 1984. Chevalier Jackson lecture. Respiratory and alimentary relations in staged human embryos. New embryological data and congenital anomalies. Ann Otol Rhinol Laryngol. 93(5 Pt 1):421-429.
Search EHD Reference/Abstract

O'Rahilly R, Müller F. 1985. The origin of the ectodermal ring in staged human embryos of the first 5 weeks. Acta Anat. 122(3):145-157.
Search EHD Reference/Abstract

O'Rahilly R, Müller F. 1987. Developmental stages in human embryos. Washington: Carnegie Institution.
Search EHD

O'Rahilly R, Müller F. 1999a. The embryonic human brain: an atlas of developmental stages. 2nd ed. New York: Wiley-Liss.
Search EHD

O'Rahilly R, Müller F. 1999b. Minireview: summary of the initial development of the human nervous system. Teratology. 60(1):39-41.
Search EHD Reference/Abstract Full Text

O'Rahilly R, Müller F. 2001. Human embryology and teratology. 3rd ed. New York: Wiley-Liss.
Search EHD

O'Rahilly R, Müller F, Hutchins GM, Moore GW. 1984. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat. 171(3):243-257.
Search EHD Reference/Abstract

O'Rahilly R, Tucker JA. 1973. The early development of the larynx in staged human embryos. Part I: Embryos of the first five weeks (to stage 15). Ann Otol Rhinol Laryngol. 82:1-27.
Search EHD Reference/Abstract

Patrick J, Campbell K, Carmichael L, Natale R, Richardson B. 1980. Patterns of human fetal breathing during the last 10 weeks of pregnancy. Obstet Gynecol. 56(1):24-30.
Search EHD Reference/Abstract

Pearson AA. 1980. The development of the eyelids. Part I. External features. J Anat. 130(1):33-42.
Search EHD Reference/Abstract Full Text

Penrose LS, Ohara PT. 1973. The development of epidermal ridges. J Med Genet. 10(3):201-208.
Search EHD Reference/Abstract

Petrikovsky BM, Kaplan GP, Pestrak H. 1995. The application of color Doppler technology to the study of fetal swallowing. Obstet Gynecol. 86(4 Pt 1):605-608.
Search EHD Reference/Abstract Full Text

Petrikovsky B, Schifrin B, Diana L. 1993. Effects of fetal acoustic stimulation on fetal swallowing and amniotic fluid index. Obstet Gynecol. 81(4):548-550.
Search EHD Reference/Abstract

Pierson LL. 1996. Hazards of noise exposure on fetal hearing. Semin Perinatol. 20(1):21-29.
Search EHD Reference/Abstract

Poissonnet CM, Burdi AR, Bookstein FL. 1983. Growth and development of human adipose tissue during early gestation. Early Hum Dev. 8(1):1-11.
Search EHD Reference/Abstract

Poissonnet CM, Burdi AR, Garn SM. 1984. The chronology of adipose tissue appearance and distribution in the human fetus. Early hum Dev. 10(1-2):1-11.
Search EHD Reference/Abstract

Pringle KC. 1988. A reassessment of pregnancy staging. Fetal Ther. 3(3):173-184.
Search EHD Reference/Abstract

Querleu D, Renard X, Boutteville C, Crepin G. 1989. Hearing by the human fetus? Semin Perinatol. 13(5):409-420.
Search EHD Reference/Abstract

Ramón y Cajal CL, Martinez RO. 2003. Defecation in utero: a physiologic fetal function. Am J Obstet Gynecol. 188(1):153-6.
Search EHD Reference/Abstract Full Text

Reinis S, Goldman JM. 1980. Prenatal and early postnatal development of brain function. The development of the brain: biological and functional perspectives. Springfield: Charles C. Thomas.
Search EHD

Robinson RJ, Tizard JPM. 1966. Central nervous system in the new-born. Br Med Bull. 22(1):49-55.
Search EHD Reference/Abstract Full Text

Romanini C, Rizzo G. 1995. Fetal behaviour in normal and compromised fetuses. An overview. Early Hum Dev. 43(2):117-131.
Search EHD Reference/Abstract Full Text

Rosenwasser AM. 2001. Alcohol, antidepressants, and circadian rhythms. Alcohol Res Health. 25(2):126-135.
Search EHD Reference/Abstract Full Text

Page 26


Sadler TW. 2005. Langman’s essential embryology. Philadelphia: Lippincott Williams & Wilkins.
Search EHD

Saunders JW. 1970. Patterns and principles of animal development. New York: Macmillan. 
Search EHD

Schaal B, Marlier L, Soussignan R. 2000. Human foetuses learn odours from their pregnant mother’s diet. Chem Senses. 25(6):729-737.
Search EHD Reference/Abstract Full Text

Schats R, Jansen CA, Wladimiroff JW. 1990. Embryonic heart activity: Appearance and development in early pregnancy. Br J Obstet Gynaecol. 97(11):989-994.
Search EHD Reference/Abstract

Shettles LB. 1958. The living human ovum. Am J Obstet Gynecol. 76:398-406.
Search EHD Reference/Abstract

Smith RP, Gitau R, Glover V, Fisk NM. 2000. Pain and stress in the human fetus. Eur J Obstet Gynecol Reprod Biol. 92(1):161-5.
Search EHD Reference/Abstract Full Text

Sorokin Y, Dierker LJ. 1982. Fetal movement. Clin Obstet Gynecol. 25(4):719-734.
Search EHD Reference/Abstract

Sparrow MP, Weichselbaum M, McCray PB. 1999. Development of the innervation and airway smooth muscle in human fetal lung. Am J Respir Cell Mol Biol. 20(4):550-560.
Search EHD Reference/Abstract Full Text

Spencer RP. 1960. The intestinal tract. Springfield: Charles C. Thomas.
Search EHD

Sperber GH. 1989. Craniofacial embryology. 4th ed. London: University.
Search EHD

Spraycar M, editor. 1995. Stedman's medical dictionary. 26th ed. Baltimore: Williams & Wilkins.
Search EHD

Straus R, Walker RH, Cohen M. 1961. Direct electrocardiographic recording of a twenty-three millimeter human embryo. Am J Cardiol. 8:443-447.
Search EHD

Streeter GL. 1942. Developmental horizons in human embryos – description of age group XI, 13 to 20 somites, and age group XII, 21 to 29 somites. Carnegie Institution of Washington. Publ. 541. Contrib Embryol. 30(197):209-244.
Search EHD

Streeter GL. 1945. Developmental horizons in human embryos – description of age group XIII, embryos about 4 or 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Carnegie Institution of Washington. Publ. 557. Contrib Embryol. 31(199):27-63.
Search EHD

Streeter GL. 1948. Developmental horizons in human embryos – description of age groups XV, XVI, XVII, and XVIII, being the third issue of a survey of the Carnegie collection. Carnegie Institution of Washington. Publ. 575. Contrib Embryol. 32(211):133-203.
Search EHD

Streeter GL. 1951. Developmental horizons in human embryos – description of age groups XIX, XX, XXI, XXII, and XXIII, being the fifth issue of a survey of the Carnegie collection.  Carnegie Institution of Washington. Publ. 592. Contrib Embryol. 34(230):165-196.
Search EHD

Tezuka N, Sato S, Kanasugi H, Hiroi M. 1991. Embryonic heart rates: development in early first trimester and clinical evaluation. Gynecol Obstet Invest. 32(4):210-212.
Search EHD Reference/Abstract

Timor-Tritsch IE, Zador I, Hertz RH, Rosen MG. 1976. Classification of human fetal movement. Am J Obstet Gynecol. 126(1):70-77.
Search EHD Reference/Abstract

Timor-Tritsch IE, Peisner DB, Raju S. 1990. Sonoembryology: an organ-oriented approach using a high-frequency vaginal probe. J Clin Ultrasound. 18(4):286-298.
Search EHD Reference/Abstract

Uhthoff HK. 1990. The embryology of the human locomotor system. Berlin: Springer-Verlag.
Search EHD

Valman HB, Pearson JF. 1980. What the fetus feels. Br Med J. 280(6209):233-234.
Search EHD Reference/Abstract Full Text

van Dongen LGR, Goudie EG. 1980. Fetal movement patterns in the first trimester of pregnancy. Br J Obstet Gynaecol. 87(3):191-193.
Search EHD Reference/Abstract

van Heeswijk M, Nijhuis JG, Hollanders HMG. 1990. Fetal heart rate in early pregnancy. Early Hum Dev. 22(3):151-156.
Search EHD Reference/Abstract

van Lith JM, Visser GH, Mantingh A, Beekhuis JR. 1992. Fetal heart rate in early pregnancy and chromosomal disorders. Br J Obstet Gynaecol. 99(9):741-744.
Search EHD Reference/Abstract

Vernall DG. 1962. The human embryonic heart in the seventh week. Am J Anat. 111:17-24.
Search EHD Reference/Abstract

Vindla S, James D. 1995. Fetal behaviour as a test of fetal wellbeing. Br J Obstet Gynaecol. 102(8):597-600.
Search EHD Reference/Abstract

Visser GHA, Mulder HH, Wit HP, Mulder EJH, Prechtl HFR. 1989. Vibro-acoustic stimulation of the human fetus: effect on behavioral state organization. Early Hum Dev. 19(4):285-296.
Search EHD Reference/Abstract

Visser GH, Mulder EJ, Prechtl HF. 1992. Studies on developmental neurology in the human fetus. Dev Pharmacol Ther. 18(3-4):175-183.
Search EHD Reference/Abstract

Vitaterna MH, Takahashi JS, Turek FW. 2001. Overview of circadian rhythms. Alcohol Res Health. 25(2):85-92.
Search EHD Reference/Abstract Full Text

Waters BL, Trainer TD. 1996. Development of the human fetal testis. Pediatr Pathol Lab Med. 16(1):9-23.
Search EHD Reference/Abstract

Watson JD, Crick FHC. 1953. Molecular structure of nucleic acids, a structure for deoxyribose nucleic acid. Nature. 171(4356):737-738.
Search EHD Reference/Abstract

Wells LJ. 1954. Development of the human diaphragm and pleural sacs. Carnegie Institution of Washington. Publ. 603. Contrib Embryol. 35:107-134.
Search EHD

Wilson KM. 1926. Correlation of external genitalia and sex-glands in the human embryo. Carnegie Institution of Washington. Publ. 363. Contrib Embryol. 18:23-30.
Search EHD

Windle WF. 1940. Physiology of the fetus. Philadelphia: W.B. Saunders.
Search EHD

Wisser J, Dirschedl P. 1994. Embryonic heart rate in dated human embryos. Early Hum Dev. 37:107-115.
Search EHD Reference/Abstract

Witschi E. 1948. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Carnegie Institution of Washington. Publ. 575. Contrib Embryol. 32:67-80.
Search EHD

Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR. 2000. Neurologic and developmental disability after extremely premature birth. N Engl J Med. 343(6):378-384.
Search EHD Reference/Abstract Full Text

Page 27


Full Names of Journals Cited

Journal Abbreviation Journal Name
Acta Anat Acta Anatomica
Acta Opthalmol Acta Ophthalmologica
Adv Contracept Advances in Contraception
Alcohol Res Health Alcohol Research & Health
Am J Anat The American Journal of Anatomy
Am J Cardiol The American Journal of Cardiology
Am J Kidney Dis American Journal of Kidney Diseases
Am J Obstet Gynecol American Journal of Obstetrics and Gynecology
Am J Reprod Immunol American Journal of Reproductive Immunology and Microbiology
Am J Respir Cell Mol Biol American Journal of Respiratory Cell and Molecular Biology
Am J Roentgenol American Journal of Roentgenology
Anat Embryol Anatomy and Embryology
Ann Otol Rhinol Laryngol The Annals of Otology, Rhinology, and Laryngology
Ann R Coll Surg Eng Annals of the Royal College of Surgeons of England
Arch Dis Child Archives of Disease in Childhood
Arch Ophthalmol Archives of Ophthalmology
Aust N Z J Psychiatry The Australian and New Zealand Journal of Psychiatry
Biol Neonate Biology of the Neonate
Birth Defects Orig Artic Ser Birth Defects Original Article Series
Br J Obstet Gynaecol British Journal of Obstetrics and Gynaecology
Br Med Bull British Medical Bulletin
Br Med J British Medical Journal
Chem Senses Chemical Senses
Child Dev Child Development
Clin Obstet Gynecol Clinical Obstetrics and Gynecology
Contrib Embryol Contributions to Embryology
Dev Med Child Neurol Developmental Medicine and Child Neurology
Dev Pharmacol Ther Developmental Pharmacology and Therapeutics
Early Hum Dev Early Human Development
Eur J Obstet Gynecol Reprod Biol European Journal of Obstetrics, Gynecology, and Reproductive Biology
Eye Eye
Facial Plast Surg Facial Plastic Surgery
Fertil Steril Fertility and Sterility
Fetal Ther Fetal Therapy
Gastroenterology Gastroenterology
Gynecol Invest Gynecologic Investigation
Gynecol Obstet Invest Gynecologic and Obstetric Investigation
Int J Psychoanal The International Journal of Psycho-Analysis
Ir J Med Sci Irish Journal of Medical Science
J Clin Ultrasound Journal of Clinical Ultrasound
J Comp Neurol The Journal of Comparative Neurology
J Med Genet Journal of Medical Genetics
J Comp Neurol Journal of Neuroradiology
J Pathol Bacteriol The Journal of Pathology and Bacteriology
J Pediatr Surg Journal of Pediatric Surgery
J Perinat Med Journal of Perinatal Medicine
J Anat Journal of Anatomy
JAMA JAMA : The Journal of the American Medical Association
Lancet Lancet
N Engl J Med The New England Journal of Medicine
N Z Med J New Zealand Medical Journal
Nature Nature
Neurology Neurology
Neuropsychologia Neuropsychologia
Nutr Rev Nutrition Reviews
Obstet Gynecol Obstetrics & Gynecology
Pediatr Pathol Lab Med Pediatric Pathology & Laboratory Medicine
Pediatr Res Pediatric Research
Pediatrics Pediatrics
Physiol Rev Physiological Reviews
Science Science
Semin Pediatr Surg Seminars in Pediatric Surgery
Semin Perinatol Seminars in Perinatology
Semin Reprod Endocrinol Seminars in Reproductive Endocrinology
Semin Roentgenol Seminars in Roentgenology
Teratology Teratology
Trans Am Neurol Assoc Transactions of the American Neurological Association
Ultrasound Obstet Gynecol Ultrasound in Obstetrics & Gynecology
Z Anat Entwicklungsgesch Zeitschrift fur Anatomie und Entwicklungsgeschichte

Page 28


Program Index

A

Page Links

abdomen 8, 9, 14
abdominal 6, 12
activity 10, 14, 16
adenine 4
adult(s) 3, 4, 10, 11, 14
age 14
age of viability 14
air 11, 14, 16
alveoli 16
amnion 6, 7
amniotic fluid 7, 11, 12, 14, 15
anise 16
articular 11

B

base pairs 17
base(s) 4, 18
behavior(al) 11, 15, 16
billion 4, 7, 11
birth 3, 6, 7, 11, 12, 13, 15, 16
blastocyst 5
blink-startle 15
blood 4, 5, 6, 7, 9, 11, 13
blood cells 6
blood vessels 6, 11
blueprint 4
body 3, 4, 5, 6, 11, 12, 13, 15
body plan 6
bone(s) 6, 10, 11, 12, 13
bowel 13
brain 6, 7, 9, 11, 15
breastfeeding 13
breathing 9, 11, 16
bronchi 8
bronchial tree 14
buds 7, 13

C

cardiac 16, 21
cardiovascular 6
Carnegie Stage(s) 3, 4, 5, 6, 7, 8, 9, 10, 21
cartilage 6, 8
cell(s) 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16
central nervous system 16
cerebral hemispheres 7, 9
chambers 6, 7
cheeks 13
chest 6, 10
childbirth 16
chromosomes 4
circulatory 5, 6
clavicle 10
close 12
cochlea 14
collar bone 10
conception 3
contraction 16
cytosine 4

D

day(s) 5, 6, 8, 10
development(al) 3, 4, 6, 7, 9, 12, 13, 16
diaphragm 9
digestive 6, 13
distinguish(ed) 12, 16
DNA 4, 17, 18

E

ear 9, 14
early pregnancy factor (EPF) 4
earth 4, 17
ectoderm 6
egg 4
elbows 10
electrocardiogram 10
electrodes 9
embryo 3, 4, 5, 6, 7, 8, 9, 11, 13
embryology 4
embryonic 3, 4, 5, 7, 9, 11, 19, 20
embryonic period 11, 20
encephalography 9
endoderm 6
energy 15
enzymes 13
epiblast 6
epidermis 11
estrogen 16
extension 11
eye(s) 10, 11, 12, 15
eyelids 10, 11, 12, 15

Page 29


F

Page Links

face 11, 12, 13
Fallopian tubes 4
fat 13, 15
female 10, 12, 13, 15
fertilization 3, 4, 5, 6, 12, 14, 15, 16
fetal 3, 5, 12, 13, 14, 15, 16
fetal period 3, 12, 17
fetus 3, 5, 6, 12, 13, 14, 15, 16
fingerprints 12
fingers 10
flattening 9
fluid 7, 11, 12, 14, 15
folding 6
follicles 14
forebrain 6, 7
formation 3, 8, 11, 12
function(s) 3, 7, 21
fuse 11

G

genitalia 12
germ cells 8
germ layers 6
gestational age 3, 14
glands 14
glucose 12
grasp 12, 16
grasping 11
gravity 11
grow(ing)(s) 3, 5, 6, 9, 11, 14
growth 6, 7, 10, 11, 12, 15
guanine 4

H

hair 6, 11, 14
hand(s) 8, 9, 10, 11, 12, 16
head 5, 7, 9, 11, 12, 13
health 15, 16
hearing 7, 14, 15
hearing loss 15
heart 6, 7, 8, 10, 14, 15
heart rate 14, 15, 20
heartbeat(s) 20
helix 4
hindbrain 6, 7
hormone(s) 5
hours 4, 14
human 3, 4, 5, 6, 11, 12, 16
human chorionic gonadotropin (hCG) 5
hypoblast 6

I

implantation 5
inner cell mass 5, 6
intestine 9, 12

J

jaw 10, 11, 12, 13
jaw movement 11, 13
joints 10, 11

Page 30


K

Page Links

kidneys 6, 8, 11
knee 10

L

labor 16
larynx 12
learning 7
left-handed 11
leg 15
licorice 16
life cycle 12
lifespan 7
light 12, 13, 15
limb(s) 7, 11, 13
lips 12
liver 6, 8, 9
lungs 8, 14, 16
lymphocytes 9

M

male 11, 12, 13
man 4
marrow 13
maternal 4, 5, 19
meconium 13
medications 5
memory 7
menstrual cycle 5
mesoderm 6
metaphase 4
meters 17
midbrain 6, 7
miles 4, 17
million 4, 7, 17
mitosis 4
molecule(s) 4, 17
morula 5
mouth 9, 11, 12, 13
move 12
movement(s) 7, 9, 10, 11, 13, 14, 16
mulberry 5
muscle(s) 6, 11
muscular 11

N

nails 6
nerve(s) 6, 11
neural 11
neuromuscular 9
newborn(s) 11, 13, 14, 16
nipple(s) 10, 13
noise 15
noradrenaline 14
norepinephrine 14
nose 12

O

odors 15
oocyte 4
oogonia 12
open(s) 12, 13, 15
ossification 10
ovaries 4, 10
ovary 4, 12
ovulation 4
oxygen 5

Page 31


P

Page Links

palms 12
pancreas 6
percent 11, 12, 13, 15, 16
physiologic herniation 9
placenta 5, 19
postfertilization age 9, 10, 13, 14, 15, 20
postmenstrual age 3, 9, 13, 14
postnatal 20
preference(s) 11, 16
pregnancy 3, 4, 5, 13, 15, 16
premature(ly) 14, 15
prenatal 21
problem-solving 7
proportion 13
protection 7
pupils 15

Q

quickening 13

R

reflex 13
reflexive(ly) 9, 11
reopen 15
reproductive 4, 8, 12
respiratory 6, 8, 14, 15
respond(s) 13, 14, 15
response 10, 12, 13, 14, 15
retina 10, 15
right-hand 11
rolling over 11
roof 13
rooting reflex 13
rotation 11

S

sac 6, 7
scalp 14
sense(s) 12, 13, 15
sex 12
sigh 12
skeletal 11
skin 6, 7, 11, 14, 15
skin layers 14
sole(s) 12
somersaults 15
sounds 14, 16
speech 7
sperm 4
spermatozoon 4
spinal cord 6
spontaneous 9, 11
squinting 11
startle 10, 15
stem cells 5, 13
stimulation 12, 13
stress response 14
stretch 12
structure(s) 3, 5, 6, 11, 14, 21
survival 3, 14
swallow(ed)(ing) 12, 15
system(s) 3, 5, 6, 8, 9, 14, 16, 21

T

taste 13, 16
taste buds 13
tears 15
temperature 5, 15, 19
testes 11
testosterone 11
thought 7
thumb sucking 12
thymine 4
toes 10, 12
tongue 12, 13
tooth 13
touch(ing) 9, 11, 12, 13
trachea 8
transparency 7, 11
trillion 3, 4, 17
trimester 13, 15
trunk 10

U

umbilical cord 5, 9, 12
umbilical vesicle 6
urine 11
uterine tube(s) 4, 5
uterus 4, 5, 11, 12, 16

V

vascular 11
vernix caseosa 14
viability 14
vocal cord development 12
vocal ligaments 12

W

walking 15
water 12
weight 11, 12, 13, 15
white blood cell 9
windpipe 8
woman 4, 13
womb 4, 14
wrinkled 15
wrist 8

Y

yawns 12
yolk sac 6, 8

Z

zygote 3, 4